Những câu hỏi liên quan
GB
Xem chi tiết
DH
19 tháng 12 2018 lúc 21:40

sai roi

Bình luận (0)
ZZ
9 tháng 12 2019 lúc 21:23

Điểm rơi \(\left(1;0;0\right)\) và các hoán vị.Ta UCT:)

Ta bất đẳng thức phụ:

\(\sqrt{7x+9}\ge x+3\) với \(0\le x\le1\)

\(\Leftrightarrow7x+9\ge x^2+6x+9\)

\(\Leftrightarrow7\ge x+6\)

\(\Leftrightarrow x\le1\left(true!!\right)\)

Khi đó ta có:

\(\sqrt{7a+9}\le a+3;\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)

\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)

Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị.

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
9 tháng 12 2019 lúc 21:27

Hoặc có thể biến đổi theo cách này:

Do \(a+b+c=1\)

\(\Rightarrow0\le a\le1\Rightarrow a^2\le a\)

Ta có:\(\sqrt{7a+9}=\sqrt{a+6a+9}\le\sqrt{a^2+6a+9}=\sqrt{\left(a+3\right)^2}=a+3\)

Tương tự:

\(\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)

\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)

Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị

PS:Hình như cách này hay hơn thì phải:v

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LN
Xem chi tiết
KD
Xem chi tiết
H24
Xem chi tiết
H24
14 tháng 5 2021 lúc 16:46

Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=4`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị 
Bài này hơi phức tạp xíu 

Bình luận (5)
H24
14 tháng 5 2021 lúc 16:46

Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=16`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị 
Bài này hơi phức tạp xíu 

Bình luận (0)
H24
14 tháng 5 2021 lúc 16:47

Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=4`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/(7)`
CMTT:`b>=(b^2+12)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị 
Bài này hơi phức tạp xíu 

Lỗi tí thông cảm ._.

Bình luận (5)
H24
Xem chi tiết
ND
14 tháng 5 2021 lúc 22:46

Bài này sửa đề thành \(\hept{\begin{cases}a,b,c\ge0\\a+b+c=1\end{cases}}\) thì mới chặt chẽ để có thể giải được

Khi đó \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)

Ta cần chứng minh: \(\sqrt{7a+9}\ge a+3\)

\(\Leftrightarrow7a+9\ge a^2+6a+9\)\(\Leftrightarrow a\ge a^2\) (luôn đúng)

Tương tự chứng minh được:

\(\sqrt{7b+9}\ge b+3\) và \(\sqrt{7c+9}\ge c+3\)

Khi đó:

\(S=\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\ge a+b+c+9=1+9=10\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=1\\b=c=0\end{cases}}\) và các hoán vị của chúng

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
13 tháng 6 2020 lúc 21:32

Đặt \(\left(\sqrt{7a+9};\sqrt{7b+9};\sqrt{7c+9}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}3\le x;y;z\le4\\x^2+y^2+z^2=34\end{matrix}\right.\)

Ta cần tìm min của \(S=x+y+z\)

Do \(3\le x;y;z\le4\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x-4\right)\le0\\\left(y-3\right)\left(y-4\right)\le0\\\left(z-3\right)\left(z-4\right)\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge\frac{x^2+12}{7}\\y\ge\frac{y^2+12}{7}\\z\ge\frac{z^2+12}{7}\end{matrix}\right.\) \(\Rightarrow x+y+z\ge\frac{x^2+y^2+z^2+36}{7}=10\)

\(S_{min}=10\) khi \(\left(x;y;z\right)=\left(3;3;4\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Bình luận (0)
LL
Xem chi tiết
BY
Xem chi tiết
H24
12 tháng 9 2021 lúc 19:45

Ta có: \(4ab\le2a^2+2b^2\)

=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)

=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)

Chứng minh tương tự 

=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)

Áp dụng bđt bunhia dạng phân thức

=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)

=> \(MinT=1\)xảy ra khi a=b=c=5/3

Bình luận (0)
 Khách vãng lai đã xóa