phan tich da thuc thanh nhan tu
a, 9x2+6x-2
b, x2+9x+x2+9
c,x3+9x+x2+9
d, (x2+8x+7)(x2+8x+15)+15
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phân tích đa thức thành nhân tử
a, 7x - 14
b, 2x - 2y + x2 - xy
c, 6x + 12
d, x2 - 8x - 9x2 - 15
a, 7x - 14
= 7(x-2)
b, 2x - 2y + \(x^2\)- xy
= (2x-2y) + (\(x^2\)-xy)
= 2(x-y) + x(x-y)
= (x-y)(2+x)
c, 6x + 12
= 6(x+2)
\(a,=7\left(x-2\right)\\ b,=2\left(x-y\right)+x\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=6\left(x+2\right)\\ d,\text{Sai đề}\)
Rút gọn phân thức: x 2 - 6 x + 9 x 2 - 8 x + 15
Khi thảo luận nhóm, một bạn ra đề bài: Hãy phân tích đa thức x4 - 9x3 + x2 - 9x thành nhân tử
Bạn Thái làm như sau:
x4 - 9x3 + x2 – 9x = x(x3 - 9x2 + x – 9).
Bạn Hà làm như sau:
x4 - 9x3 + x2 – 9x = (x4 - 9x3) + (x2 – 9x)
= x3(x – 9) + x(x – 9) = (x – 9)(x3 + x).
Bạn An làm như sau:
x4 - 9x3 + x2 – 9x = (x4 + x2) - (9x3 + 9x) = x2(x2 + 1) – 9x(x2 + 1)
= (x2 – 9x) (x2 + 1)= x(x – 9)(x2 + 1).
Hãy nêu ý kiến của em về lời giải của các bạn
Lời giải của các bạn đều thỏa mãn yêu cầu đề bài là phân tích đa thức thành nhân tử
Bài 1: Tìm nghiệm của các đa thức sau:
a) x + 7; b) x – 4; c) –8x + 20; d) x2 – 100;
e) 4x2 – 81; f) x2 – 7; g) x2 – 9x; h) x3 + 3x.
phan tich da thuc thanh nhan tu
3x^4-48
x^4-8x
x^3-6x^2+9x
\(3x^4-48\)
\(=\left(3x^4-6x^3\right)+\left(6x^3-12x^2\right)+\left(12x^2-24x\right)+\left(24x-48\right)\)
\(=3x^3\left(x-2\right)+6x^2\left(x-2\right)+12x\left(x-2\right)+24\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(3x^3+6x^2\right)+\left(12x+24\right)\right]\)
\(=\left(x-2\right)\left[3x^2\left(x+2\right)+12\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(3x^2+12\right)\)
\(x^4-8x\)
\(=x\left(x^3-8\right)\)
\(=x\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(4x-8\right)\right]\)
\(=x\left[x^2\left(x-2\right)+2x\left(x-2\right)+4\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
\(x^3-6x^2+9x\)
\(=\left(x^3-3x^2\right)-\left(3x^2-9x\right)\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x\right)\)
\(=x\left(x-3\right)\left(x-3\right)\)
3. Tìm nghiệm của các đa thức sau:
a) x + 7; b) \(\dfrac{1}{2}\)x - 4; c) - 8x + 20; d) x2 -100;
e) 4x2 -81; f) x2 - 7; g) x2 - 9x; h) x3 + 3x.
b: 1/2x-4=0
=>1/2x=4
hay x=8
a: x+7=0
=>x=-7
e: 4x2-81=0
=>(2x-9)(2x+9)=0
=>x=9/2 hoặc x=-9/2
g: x2-9x=0
=>x(x-9)=0
=>x=0 hoặc x=9
a)\(x+7=0=>x=-7\)
b)\(\dfrac{1}{2}x-4=0=>\dfrac{1}{2}x=4=>x=8\)
c)\(-8x+20=0=>-8x=-20=>x=\dfrac{5}{2}\)
d)\(x^2-100=0=>x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
e)\(4x^2-81=0=>4x^2=81=>x^2=\dfrac{81}{4}=>\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{9}{2}\end{matrix}\right.\)
f)\(x^2-7=0=>x^2=7=>x=\sqrt{7}\)
g)\(x^2-9x=0=>x\left(x-9\right)=0=>\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
3. Tìm nghiệm của các đa thức sau:
a) x + 7; b) \(\dfrac{1}{2}\)x - 4; c) - 8x + 20; d) x2 -100;
e) 4x2 -81; f) x2 - 7; g) x2 - 9x; h) x3 + 3x.
a: x+7=0
nên x=-7
b: x-4=0
nên x=4
c: -8x+20=0
=>-8x=-20
hay x=5/2
d: x2-100=0
=>(x-10)(x+10)=0
=>x=10 hoặc x=-10
a) x +7 =0
=>x = -7
b) x - 4 =0=>x = 4
c) -8x + 20 = 0 =>-8x =-20 =>\(x=-\dfrac{20}{-8}=\dfrac{5}{2}\)
d)\(x^2-100=0=>x^2=100>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
e)\(4x^2-81=0=>4x^2=81=>x^2=\dfrac{81}{4}=>\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{9}{2}\end{matrix}\right.\)
f)\(x^2-7=0=>x^2=7=>x=\sqrt{7}\)
g)\(x^2-9x=0=>x\left(x-9\right)=0=>\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
H)\(x^3+3x=0=>x\left(x^2 +3\right)=0=>\left[{}\begin{matrix}x=0\\x^2=-3\left(vl\right)\end{matrix}\right.\)