Những câu hỏi liên quan
PK
Xem chi tiết
AH
22 tháng 11 2021 lúc 21:37

Lời giải:

a.

$2a+3b\vdots 13$

$\Leftrightarrow 2a+13a+3b\vdots 13$

$\Leftrightarrow  15a+3b\vdots 13$

$\Leftrightarrow 3(5a+b)\vdots 13$

$\Leftrightarrow  5a+b\vdots 13$

b.

$4a+3b\vdots 11$

$\Leftrightarrow 4a-11a+3b\vdots 11$

$\Leftrightarrow -7a+3b\vdots 11$

$\Leftrightarrow -(7a-3b)\vdots 11$

$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)

 

Bình luận (0)
NC
Xem chi tiết
OY
23 tháng 8 2021 lúc 8:26

a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)

Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11

Bình luận (0)
OY
23 tháng 8 2021 lúc 8:28

b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)

Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)

Bình luận (0)
H24
23 tháng 8 2021 lúc 8:28

a)ab+ba

=a.10+b.1+b.10+a.1

=a.10+a.1+b.10+b.1

=a.(10+1)+b.(10.1)

=a.11+b.11

=11.(a+b)11(vì 1111)

b)ab - ba

= 10a + b - (10b + a)

= 10a + b - 10b - a

= 9a - 9b = 9(a - b)

Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)

 

Bình luận (0)
KA
Xem chi tiết
NH
31 tháng 1 2021 lúc 21:22

a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)

b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)

Bình luận (0)
TN
Xem chi tiết
NM
30 tháng 6 2017 lúc 13:36

\(23a+13b+17c=14a+9a+7b+6b+14c+3c=.\)

\(=\left(14a+7b+14c\right)+\left(9a+6b+3c\right)\)

\(=7\left(2a+b+2c\right)+3\left(3a+2b+c\right)\)

Ta có

\(7\left(2a+b+2c\right)\)chia hết cho 7

\(3a+2b+c\)chia hết cho 7 nên \(3\left(3a+2b+c\right)\)chia hết cho 7

\(\Rightarrow23a+13b+17c\)chia hết cho 7

Bình luận (0)
DH
30 tháng 6 2017 lúc 13:35

\(3a+2b+c⋮7\)

\(\Leftrightarrow30a+20b+10c⋮7\)

\(\Leftrightarrow\left(7a+7b-7c\right)+\left(23a+13b+17c\right)⋮7\)

\(\Leftrightarrow7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\)

Ta thấy \(7\left(a+b-c\right)⋮7\)

Để \(7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\Leftrightarrow23a+13b+17c⋮7\)(đpcm)

Bình luận (0)
TN
30 tháng 6 2017 lúc 13:46

Cộng cả tử và mẫu của một phân số 23/40 cùng một số tự nhiên n rồi rút gọn, ta được 3/4.Tìm số tự nhiên n.

Bình luận (0)
PT
Xem chi tiết
PT
27 tháng 8 2021 lúc 16:25

giúp mik nếu đúg mik sẽ tik

 

Bình luận (0)
PT
27 tháng 8 2021 lúc 16:29

giúp mik ik

 

Bình luận (0)
H24
27 tháng 8 2021 lúc 16:30

a) \(A=3+3^2+3^3+...+3^{60}\)

Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)

\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)

b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)

 

Bình luận (1)
DM
Xem chi tiết
DM
Xem chi tiết
LP
8 tháng 7 2023 lúc 22:53

 Bạn xem lại đề bài nhé. Với \(a=1,b=9\) thì \(111a+25b=336⋮12\) nhưng \(9a+13b=126⋮̸12\). Mình nghĩ đề bài là chứng minh \(9a+3b⋮12\). Vì \(111a+25b⋮12\) nên \(108a+24b+3a+b⋮12\) hay \(3a+b⋮12\) hay \(9a+3b⋮12\).

Bình luận (0)
NH
Xem chi tiết
H24
18 tháng 1 2021 lúc 19:41

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.

Bình luận (0)
NH
Xem chi tiết
HL
Xem chi tiết
AG
18 tháng 9 2023 lúc 15:04

a + 5b = (a - b) + 6b = 6 + 6b = 6(1 + b) chia hết cho 6

a - 13b = (a - b) - 12b = 6 - 12b = 6(1 - 2b) chia hết cho 6

Bình luận (0)