Những câu hỏi liên quan
CT
Xem chi tiết
DH
4 tháng 8 2017 lúc 20:10

\(P\left(x\right)=x^{2017}+x^2+1\)

\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)

\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)

\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)

Bình luận (0)
TL
Xem chi tiết
NT
1 tháng 7 2023 lúc 21:39

\(\dfrac{P\left(x\right)}{Q\left(x\right)}=\dfrac{x^{10}+x^5+x^3}{x^2+x+1}\)

\(=\dfrac{x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6+x^3}{x^2+x+1}\)

\(=x^8-x^7+x^5-\dfrac{x^3\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)

=x^8-x^7+x^5-x^4+x^3

Bình luận (0)
PO
Xem chi tiết
NL
20 tháng 3 2022 lúc 12:16

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)

Bình luận (2)
NA
Xem chi tiết
PT
Xem chi tiết
KN
5 tháng 9 2020 lúc 16:00

\(P\left(x\right)=x^{100}+x^2+1=x^{100}-x^{99}+x^{98}+x^{99}-x^{98^{ }}+x^{97}-x^{97}+x^{96}-x^{95}+...+x^2-x+1\)

\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)-x^{95}\left(x^2-x+1\right)-...+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^{98}+x^{97}-x^{95}-...+1\right)\)=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TD
Xem chi tiết
NY
Xem chi tiết
NT
Xem chi tiết
NM
13 tháng 12 2015 lúc 20:24

1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)

                                             \(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2

2)  gọi dư của phép chia là ax+b

 ta có f(1) = a+b =51

         f(-1) = -a+b =1 

=> b =26 ; a =25

Vậy dư là : 25x + 26

Bình luận (0)