TÌM GTNN của A= x^2+5y^2-4xy-2x-4y+5
Tìm GTNN của 2x^2+5y^2-4xy-2x-4y+5
tìm gtnn của
a)A=x^2-3x
b)B=2x^2-x
c)C=5x^2+4y-4xy-4x
d)D=x^2+5y-4xy-6x+8y+12
Bạn xem lại đề câu d nhé.
Bạn cũng cần xem lại đề câu c nhé.
Tìm GTNN, GTLN (nếu có) của các biểu thức sau:
a) A = 5 - x^2 + 2x - 4y^2 - 4y
b) B = x^2 - 2x + y^2 - 4y + 7
c) C = x^2 - 4xy + 5y^2 + 10x - 22y + 28
d) D = (x-1) (x+2) (x+3) (x+6)
1,Tìm GTNN
\(2x^2+5y^2-4xy-2x+4y+10\)
2,Tìm GTLN
a,\(3-10x^2-4xy-4y^2\)
b,\(-x^2-y^2+2x-4y-4\)
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
Tìm GTNN:
a) P=2x2+5y2+4xy+8x-4y+15
b) C=2x2+4y2+4xy-3x-1
a, \(P=2x^2+5y^2+4xy+8x-4y+15\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)
Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)
Vậy...
b, \(C=2x^2+4xy+4y^2-3x-1\)
\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
sau đó giải tương tự câu a nhé
Tìm GTNN của M=x^2+5y^2+4xy+4y+11
\(M=\left(x^2+4xy+4y^2\right)+\left(y^2+4y+4\right)+7=\left(x+2y\right)^2+\left(y+2\right)^2+7\ge7\\ M_{min}=7\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-2\end{matrix}\right.\)
Tìm GTNN của C= \(2x^2+5y^2+4xy+8x-4y-100\)
\(C=2x^2+5y^2+4xy+8x-4y-100 \)
\(C=\left(x^2+8x+16\right)+\left(y^2-4y+4\right)+\left(x^2+4xy+4y^2\right)-120\)
\(C=\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)
Vậy GTNN của C là -120 khi x = -4; y = 2
\(C=x^2+4xy+4y^2+x^2+8x+16+y^2-4y+4-120\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\)
vậy GTNN của C là -120 khi \(x=-4;y=2\)
Tìm GTNN, GTLN (nếu có) của các biểu thức sau:
a) A = 5 - x^2 + 2x - 4y^2 - 4y
b) B = x^2 - 2x + y^2 - 4y + 7
c) C = x^2 - 4xy + 5y^2 + 10x - 22y + 28
d) D = (x-1) (x+2) (x+3) (x+6)
\(A=5-x^2+2x-4y^2-4y=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\\ =-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
vậy MAX A=7 tại \(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
\(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
đặt: \(t=x^2+5x\) khi đó:
\(D=\left(t-6\right)\left(t+6\right)\\ D=t^2-36\ge-36\)
đẳng thức xảy ra khi :
\(t=0\\ \Leftrightarrow x^2+5x=0\\ x\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
vậy MAX D=-36 tại x=0 hoặc x=-5
Tìm GTNN của các biểu thức sau
a) u^2 + v^2 - 2u + 3v + 15
b) 2x^2 + 5y^2 + 4xy + 8x - 4y - 100
a) Đặt A = u2 + v2 - 2u + 3v + 15
= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4
= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)
Vậy Min A = 47/4 <=> u = 1 ; y = -3/2