Những câu hỏi liên quan
MT
Xem chi tiết
DA
15 tháng 11 2017 lúc 21:20

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

Bình luận (0)
TN
17 tháng 11 2017 lúc 8:19

Đáp số : 3

Bình luận (0)
NA
19 tháng 11 2020 lúc 20:24

a) Nếu P = 2 thì P + 10 = 2 + 10= 12 > 3 và chia hết cho 3 suy ra P + 10 là HS ( loại )

    Nếu P = 3 thì+) + 10 = 3 + 10 = 13 > 3 và ko chia hết cho 3 suy ra P + 10 là SNT( chọn)

                         +) + 20 = 3 + 20 = 23 > 3 và chia hết cho 3 suy ra P + 20 là SNT ( chọn )

    Nếu P là SNT > 3 suy ra P có dạng 3k+1, 3k+2

    +) Khi P = 3k + 1 thì P + 20 = 3k + 1 + 20 = 3k + 21 = 3.(k + 7) > 3 và chia hết cho 3 suy ra P + 20 là HS ( loại )

    +) Khi P = 3k + 2 thì P + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) > 3 và chia hết cho 3 suy ra P + 10 là Hs ( loại )

                            Vậy P = 3

 Đề bài câu b phải là P + 2 và P - 2 nhé!

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
HH
28 tháng 10 2016 lúc 15:16

Ai nhanh minh  cho

Bình luận (0)
LV
15 tháng 10 2021 lúc 8:28

\(a)\)Vì \(p\)là số nguyên tố

\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)

\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )

\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )

\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:

\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )

\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )

Vậy \(p=3\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
15 tháng 10 2021 lúc 8:38

\(b)\)Với \(p=2\Rightarrow p+10=2+10=12\)( ko là số nguyên tố  )   \(\Rightarrow\) ( loại )

Với \(p=3\Rightarrow p+10=3+10=13\)

\(\Rightarrow\)\(p+20=20+3=23\)( đều là các số nguyên tố )   \(\Rightarrow\) ( chọn )

Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow\)\(p=3k+1\left(k\in N\right)\)

\(\Rightarrow\)\(p+20=3k+1+20\)

\(=\)\(3k+21=3\left(k+7\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\))

\(\Rightarrow\)\(3\left(k+7\right)\)là hợp số ; hay \(p+20\)là hợp số \(\Rightarrow\)( loại )

Nếu \(p\)chia 3 dư 2 \(\Rightarrow\)\(p=3k+2\left(k\in N\right)\)

\(\Rightarrow\)\(p+10=3k+2+10\)

\(=\)\(3k+12=3\left(k+4\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\))

\(\Rightarrow\)\(3\left(k+4\right)\)là hợp số; hay \(p+10\)là hợp số \(\Rightarrow\)( loại )

Vậy \(p=3\)thỏa mãn đề bài \(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
H24
18 tháng 7 2015 lúc 19:20

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

Bình luận (0)
TL
18 tháng 7 2015 lúc 19:30

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

Bình luận (0)
My
14 tháng 8 2016 lúc 15:35

 câu a là p ko có giá trị chớ

Bình luận (0)
HH
Xem chi tiết
HK
31 tháng 10 2017 lúc 15:09

số đó là 3

3+10=13 là số nguyên tố

3+20=23 là số nguyên tố

hihi

Bình luận (0)
LM
2 tháng 1 2018 lúc 11:37

nếu p = 2 thì p+10= 2+10=12 là hợp số(loại)

nếu p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố( thỏa mãn)

                   p + 20 = 3 + 20 = 23 là số nguyên tố( thỏa mãn )

nếu p > 3 p có dạng 3k+1 hoặc 3k+2 ( k thuộc số tự nhiên khác 0 )

trường hợp 1: p có dạng 3k +1 thì P + 20 = 3k+1 +20=3k+21= 3(k+7)chia hết cho 3 là hợp số ( loại ) (1 )

th2 : p có dạng 3k +2 thì p+10 = 3k+2 +10= 3k+12= 3(k+4) chia hết cho 3 là hợp số ( loại) (2)

từ(1) và (2)  => p > 3 thì p ko thỏa mãn

vậy P chỉ có thể = 3

Bình luận (0)
ND
5 tháng 1 2018 lúc 12:40

số đó là 3 vì

3+10=13 là số nguyên tố

3+20 =23 là số nguyên tố

Bình luận (0)
DL
Xem chi tiết
NT
26 tháng 2 2017 lúc 16:28

tớ chỉ biết làm phần d thôi

            Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2

        +) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5

                                                  p+4=3+4=7 là số nguyên tố (chọn)

        +) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)

        +) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)

                            Vậy số cần tìm là 3

Bình luận (0)
AN
26 tháng 2 2017 lúc 20:42

Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé

Bình luận (0)
NT
26 tháng 2 2017 lúc 21:51

a) +) Ta xét p=2 \(\Rightarrow\)p+10 =2+10=12   là hợp số trái với đề bài (loại)

                                p+14=2+14=16    là hợp số trái với đề bài (loại)

    +) Ta xét p=3\(\Rightarrow\)p+10=3+10=13    là số nguyên tố (chọn) 

                                p+14=3+14=17    là số nguyên tố (chọn)

    +) Nếu p=3k+1 thì p+10=3k+1+10=3k+11

                                p+14=3k+1+14=(3k+15)\(⋮\)3 là hợp số (loại)

     +) Nếu p=3k+2 thì p+10=3k+2+10 số (loại)

                               \(\Rightarrow\)(3k+12)\(⋮\)3 là hợp số (loại)

                                     Vậy p=3

NHỚ K NHA 

                              

Bình luận (0)
NT
Xem chi tiết
CC
22 tháng 11 2021 lúc 18:39

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc 

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
GH
6 tháng 7 2023 lúc 16:17

a) Vì số nhà của bạn An và bạn Bình đều chia hết cho 5.

⇒ b tận cùng bằng 0 hoặc 5.

*Th1: b=0

⇒ a+5+3+0 chia hết cho 9⇒a=1⇒a53b=1530

*Th2: b=5

⇒ a+5+3+5 chia hết cho 9⇒a=5⇒a53b=5535

mà số nhà của An>Bình 

⇒ Số nhà An:5535

⇒ Số nhà Bình: 1530

 

Bình luận (0)
GH
6 tháng 7 2023 lúc 16:18

b) xét p=2 suy ra ko thỏa mãn

xét p=3 thỏa mãn điều kiện đề bài

với p>3 xét p=3a+1 suy ra p+20=3a+21=3(a+7)

suy ra p+20 là hợp số (loại)

với p=3a-1 suy ra p+10=3a+9=3(a+3)

suy ra p+10 cũng là hợp số (loại)

vậy chỉ có p=3 thỏa mãn yêu cầu đề bài

Bình luận (0)
GH
6 tháng 7 2023 lúc 16:19

chúc bạn học tốt

Bình luận (0)
PA
Xem chi tiết
NT
21 tháng 2 2022 lúc 11:56

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

Bình luận (0)
UT

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

Bình luận (0)
VD
19 tháng 12 2024 lúc 19:55

với p=2ta có

p+2=2+2=4(loại)

với p=3ta có

p+10=3+10=13

p+20=3+20=23

suy ra p=3 là hợp lí

với p>3 thì p có dạng là 3k=1 và 3k=2

với p=3k+1 ta có

p+20=3k+1+20=3k+21(loại)

với p=3k=2 ta có 

p+10=3k+2+10=12(loại) 

Vập p = 3

Nhớ tick cho mình nhé!

Bình luận (0)
H24
Xem chi tiết