Phân tích đa thức thành nhân tử
x4 + 2x2 - 24
x3 - 2x - 4
phân tích đa thức thành nhân tử
x4 - 2x3 -2x2 -2x -3
x4 - 2x3-2x2 -2x -3
=(x4+x3)-(3x3+3x2)+(x2+x)-(3x+3)
=x3(x+1)-3x2(x+1)+x(x+1)-3(x+1)
= (x3-3x2+x-3)(x+1)
= ((x3-3x2)+(x-3))(x+1)
= (x2(x-3)+(x-3))(x+1)
=(x2+1)(x-3)(x+1)
phân tích đa thức thành nhân tử
x4+4=
\(x^4+4\)
= \(\left(x^2+2\right)^2-4x^2\)
= \(\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
phân tích đa thức thành nhân tử
x4 - 4x - 1
Đa thức này không phân tích được thành nhân tử bạn nhé.
phân tích đa thức thành nhân tử
x4+x2y2+y4
`x^4+x^2 y^2+y^4`
`=x^4+2x^2 y^2 +y^4-x^2 y^2`
`=(x^2+y^2)^2-(xy)^2`
`=(x^2-xy+y^2)(x^2+xy+y^2)`
phân tích đa thức thành nhân tử
x4+(n+1)x2+nx+n+1
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4
x3 + 2x2 - 2x -1 → phân tích đa thức sau thành nhân tử ?
= x^3 - x^2 + 3x^2 - 3x + x - 1
= (x - 1)(x^2 + 3x + 1)
\(x^3+2x^2-2x-1\)
\(=\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+3x+1\right)\)
Phân tích đa thức (2x2 - y2)+xy-(2x-y) thành nhân tử
Lời giải:
$(2x^2-y^2)+xy-(2x-y)=(2x^2+xy-y^2)-(2x-y)$
$=[(2x^2-xy)+(2xy-y^2)]-(2x-y)=[x(2x-y)+y(2x-y)]-(2x-y)$
$=(2x-y)(x+y)-(2x-y)=(2x-y)(x+y-1)$
Phân tích các đa thức sau thành nhân tử x 3 + 2 x 2 + 2 x + 1
Phân tích đa thức thành nhân tử:
1) x2 - y2 - 2x + 1
2) x3 - 2x2 - x + 2
3) x2 - 2x2 - x + 2
1: =(x-1-y)(x-1+y)
3: =(x-1)(x+1)(x-2)