Những câu hỏi liên quan
NN
Xem chi tiết
ML
12 tháng 12 2021 lúc 11:37

Ta có \(y^2=3-2\left|2x+3\right|\ge0\Leftrightarrow0\le\left|2x+3\right|\le\dfrac{3}{2}\)

Mà \(x,y\in Z\Leftrightarrow\left|2x+3\right|\in\left\{0;1\right\}\)

Với \(\left|2x+3\right|=0\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\)

Với \(\left|2x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\Leftrightarrow y^2=1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;1\right);\left(-1;-1\right);\left(-2;1\right);\left(-2;-1\right)\)

Bình luận (0)
H24
Xem chi tiết
KN
26 tháng 10 2020 lúc 18:44

\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)

Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)

\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)

Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)

Trường hợp y = x - 1 thì phương trình trở thành \(x^3-2x^2+3x-1=x^3-3x^2+3x-1\Leftrightarrow x^2=0\Leftrightarrow x=0\Rightarrow y=-1\)Trường hợp y = x thì phương trình trở thành \(2x^2-3x+1=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1=y\\x=\frac{1}{2}\left(L\right)\end{cases}}\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
KG
Xem chi tiết
NN
9 tháng 8 2023 lúc 12:41

Đáp án:

 

Giải thích các bước giải:

Ta có:

2�2+3�+2

=2(�2+32�+1)

=2(�2+2.�.34+916+716)

=2[(�+34)2+716]

=2(�+34)2+78

Nhận xét:

2(�+34)2≥0 

Bình luận (0)
NT
9 tháng 8 2023 lúc 13:44

\(x^3+2x^2+3x+2=y^3\left(1\right)\)

- Nếu \(x=0\Leftrightarrow y^3=2\) không tồn tại y nguyên

- Nếu \(x\ne0\Rightarrow x^2\ge1\Rightarrow x^2-1\ge0\)

\(\left(1\right)\Leftrightarrow y^3=x^3+2x^2+3x+2\)

\(\Leftrightarrow y^3=x^3+3x^2+3x+1-\left(x^2-1\right)\)

\(\Leftrightarrow y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\left(2\right)\)

Ta lại có 

\(y^3=x^3+2x^2+3x+2=x^3+\left[2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+2-\dfrac{9}{8}\right]\)

\(\Rightarrow y^3=x^3+\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]\)

mà \(\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]>0\)

\(\Rightarrow y^3< x^3\left(3\right)\)

\(\left(2\right),\left(3\right)\Rightarrow x^3< y^3\le\left(x+1\right)^3\)

\(\Rightarrow y^3=\left(x+1\right)^3\)

\(\left(2\right)\Rightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=1;x=-1\)

Nếu \(x=-1\Rightarrow y=0\)

Nếu \(x=1\Rightarrow y=2\)

Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;2\right)\right\}\) thỏa mãn đề bài

Bình luận (0)
TT
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
KY
Xem chi tiết
MU
2 tháng 9 2015 lúc 21:30

Đặng Đỗ Bá Minh lih tih 

Bình luận (0)
H24
Xem chi tiết