Phân nhân:
A= x^2+ x^3+ x
B= xy +3x + 7y+ 21
C= (x+ 2)^2 + 4x + 8
D= x^2 - 8x+ 15
E= x^2- 30x +200
Phân tích các đa thức sau thành nhân tử:
a) x^3-4x^2+4x
b) x^2-2xy+y^2-9
c)2x^3-x^2-8x+4
d) x^2-y^2-5x+5y
e) 3x^2-6xy+3y^2-12z^2
f) x^3-4x^2+4x-xy^2
g) x^3-2x^2y+xy^2-25x
h) x^3-3x+2
i) 3x^2-7x-10
\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)
phân tích đa thức thành nhân tử
a)x^2-4x+3
b)x^2+6xy+5y^2
c)x^2+3x-18
d)8x^2+30xy+7y^2
e)x^3-11x^2+30x
f)x^3+8x^2y+15xy^2
Câu a : \(x^2-4x+3=\left(x-1\right)\left(x-3\right)\)
Câu b : \(x^2+6xy+5y^2=\left(x+y\right)\left(x+5y\right)\)
Câu c : \(x^2+3x-18=\left(x-3\right)\left(x+6\right)\)
Câu d : \(8x^2+30xy+7y^2=\left(2x+7y\right)\left(4x+y\right)\)
Câu e : \(x^3-11x^2+30x=x\left(x-5\right)\left(x-6\right)\)
Câu f : \(x^3+8x^2y+15xy^2=\left(x+3y\right)\left(x^2+5xy\right)\)
1.Đa thức 4x(2y-z) +7y(2y-z) được phân tích thành nhân tử là :
A .(2y+z)(4x+7y)
B.(2y-z)(4x-7y)
C.(2y+z)(4x-7y)
D. (2y-z)(4x+7y)
2 Phân tích đa thức x2+3x+xy+3y thành nhân tử ta được :
A. (x+3)(y+3)
B. (x-y)(x+3)
C. (x+3)(x+y)
D. Cả 3 đều sai
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
a) \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+x^4\)
b) \(\left(x^2+4x+2\right)^2-3x\left(x^2+4x+2\right)+2x^2\)
c) \(4x^4-8x^3+3x^2-8x+4\)
d)\(2x^4-15x^3+35x^3-30x+8\)
Bài 1 : Phân tích đa thức thành nhân tử
a) 5x^2y-20xy^2
b) 1-8x+16x^2-y^2
c) 4x-4-x^2
d) x^3-2x^2+x-xy^2
e)27-3x^2
f) 2x^2+4x+2-2y^2
Bài 2: tìm x, biết
a) x^2(x-2023)-2023+x=0
b) -x(x-4)+(2x^3-4x^2-9x):x=0
c) x^2+2x-3x-6=0
d) 3x(x-10)-2x+20=0
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
Bài 2
a) x²(x - 2023) - 2023 + x = 0
x²(x - 2023) - (x - 2023) = 0
(x - 2023)(x² - 1) = 0
x - 2023 = 0 hoặc x² - 1 = 0
*) x - 2023 = 0
x = 2023
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 1; x = 2023
b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0
-x² + 4x + 2x² - 4x - 9 = 0
x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
c) x² + 2x - 3x - 6 = 0
(x² + 2x) - (3x + 6) = 0
x(x + 2) - 3(x + 2) = 0
(x + 2)(x - 3) = 0
x + 2 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x - 3 = 0
x = 3
Vậy x = -2; x = 3
d) 3x(x - 10) - 2x + 20 = 0
3x(x - 10) - (2x - 20) = 0
3x(x - 10) - 2(x - 10) = 0
(x - 10)(3x - 2) = 0
x - 10 = 0 hoặc 3x - 2 = 0
*) x - 10 = 0
x = 10
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = 2/3; x = 10
bài 4 phân tích
3x^2-30x+75
xy -x^2-x^2-x
x^2-7x-8
4x^3 +8x^2y+4xy^2-16x
xy+xz -2y-2z
x^2+6x+9-y^3
a)\(=3\left(x-5\right)^2\)
b)\(=x\left(y-2x-1\right)\)
c)\(=\left(x+1\right)\left(x-8\right)\)
d)\(=4x\left(x+y+2\right)\left(x+y-2\right)\)
e)\(=\left(y+z\right)\left(x-2\right)\)
g)\(=\left(x+3+y\right)\left(x+3-y\right)\)
bài 4 phân tích
3x^2-30x+75
xy -x^2-x^2-x
x^2-7x-8
4x^3 +8x^2y+4xy^2-16x
xy+xz -2y-2z
x^2+6x+9-y^3
a) A = \(3x^2-30x+75=3\left(x^2-10x+25\right)=3\left(x-5\right)^2\)
b) B = \(xy-x^2-x^2-x=xy-2x^2-x=x\left(y-2x-1\right)\)
c) C= \(x^2-7x-8=x^2-7x+12,25-20,25=\left(x-3,5\right)^2-20,25\)
Bài 1:Thực hiện phép tính a) x(3x^2 + 2x) b) (x + 3)^2 c) (x - 2)^3 Bài 2: Phân tính đa thức thành nhân tử a) 6x^3y - 9x^2y^2 b) 4x^2 - 25 c) x^2y - xy + 7x - 7y Bài 3: a) Tính nhanh giá trị biểu thức: M = 4x^2 - 20x + 25 tại x = 105/2 b) Tìm x, biết: x^3 - 1/9x = 0