32012 có phai sô chính phương ko chứng minh.
chứng minh rằng tổng hai số chính phương lẻ ko là số chính phương
chứng minh rằng một số chính phương có chữ số tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ
1 số chính phương có chữ số hàng chục bằng 5 . tìm chữ sô hàng đơn vị
chứng minh tich cua 2 so tn lien tiep ko phai la số chính phương
Cho 2 số đó lần lượt là a và a+1
Ta có tích của 2 số : a(a+1)=a^2+a
a^a<a^2+a
=> a(a+1) không thể là số chính phương (đpcm)
Bạn tham khảo ở đây nè :
Câu hỏi của Đức Lê - Toán lớp 7 - Học toán với OnlineMath
Đúng 100%
Đúng 100%
Đúng 100%
Gọi 2 số tự nhiên liên tiếp là n, n+1
Ta có n.(n + 1) = n^2 +n
\(\Rightarrow\)n^2 < n^2 +n < n^2 +2n + 1
\(\Rightarrow\)n^2 < n(n+1) < (n +1)^2
Giữa 2 số chính phương liên tiếp ko có số chính phương nào nữa
Vậy n.(n+1) ko là số chính phương
chứng minh 4^20 -1 và 1000001 là sô chính phương
Cho một phép tính:
S = 5 + 52 + 53 + … + 52020
Hãy chứng minh 45 + S là sô chính phương.
giúp mình câu này với:
Cho một phép tính:
S = 5 + 52 + 53 + … + 52020
Hãy chứng minh 45 + 5 là sô chính phương.
Sửa đề: 4S+5 là lũy thừa của 5
5S=5^2+5^3+...+5^2021
=>4S=5^2021-5
=>4S+5=5^2021 là lũy thừa của 5
cho x,y là sô nguyên. chứng minh (x+y)(x+3y)(x+5y)(x+7y)+16y^4 là số chính phương
\(A=\left(x+y\right)\left(x+3y\right)\left(x+5y\right)\left(x+7y\right)+16y^4\)
\(=\left(x^2+8xy+7y^2\right)\left(x^2+8xy+15y^2\right)+16y^4\)
\(=\left(x^2+8xy+7y^2\right)^2+8y^2\left(x^2+8xy+7y^2\right)+16y^4\)
\(=\left(x^2+8xy+7y^2+4y^2\right)^2=\left(x^2+8xy+11y^2\right)^2\)
-Vậy A là số chính phương với mọi x,y nguyên.
Chứng minh 1 số có phải là số chính phương ko?(Được dùng căn bậc 2 nhé!)
23! + 3 có phải là số chính phương ko ??
a) Chứng minh rằng số chính phương khi chia cho 3 ko thể dự 2
b) Chứng minh tổng của 3 số chính phương liên tiếp ko thể là một số chính phương
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0
(2k+1) 2k (2k-1)
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương
Mình ko chắc đã đúng đâu
cho M=32012-32011+32010-32009
chứng minh M chia hết cho 10
Ta có: \(M=3^{2012}-3^{2011}+3^{2010}-3^{2009}\)
\(=\left(3^{2012}+3^{2010}\right)-\left(3^{2011}+3^{2009}\right)\)
\(=3^{2010}\cdot\left(3^2+1\right)-3^{2009}\left(3^2+1\right)\)
\(=\left(3^2+1\right)\cdot\left(3^{2010}-3^{2009}\right)\)
\(=10\cdot3^{2009}\cdot\left(3-1\right)⋮10\)(đpcm)