Chứng minh rằng: Nếu \(A\subset C\) và \(B\subset C\) thì (\(A\cup B\))\(\subset C\)
a. Cho \(A\subset C\) và \(B\subset D\), chứng minh rằng \(\left(A\cup B\right)\subset\left(C\cup D\right)\)
b. Chứng minh rằng A\ \(\left(B\cap C\right)=\left(A\B\right)\cup\left(A\C\right)\)
c. Chứng minh rằng A\ \(\left(B\cup C\right)=\left(A\B\right)\cap\left(A\C\right)\)
Cho A,B,C là ba tập hợp . Mệnh đề nào sau đây là sai?
A. \(A\subset B\Rightarrow A\cap B\subset B\cap C\)
B. \(A\subset B=C\A\subset C\B\)
C. \(A\subset B\Rightarrow A\cup C\subset B\cup C\)
D. \(A\subset B,B\subset C\Rightarrow A\subset C\)
Mệnh đề A sai
Phản ví dụ: vì C bất kì nên \(B\cap C\) có thể bằng rỗng, mà \(A\cap B=A\) nên nếu \(A\ne\varnothing\) thì \(A\cap B\) không phải con của \(B\cap C\)
Bạn An khẳng định rằng: Với các tập hợp A, B, C bất kì, nếu \(A \subset B\) và \(B \subset C\) thì \(A \subset C.\)
Khẳng định của bạn An có đúng không? Hãy giải thích bằng cách sử dụng biểu đồ Ven.
Tham khảo:
+) Biểu diễn: \(A \subset B\)
+) Sau đó, biểu diễn: \(B \subset C\)
Quan sát biểu đồ Ven, dễ thấy \(A \subset C.\)
Chứng minh rằng A\(\subset\)B ,mà B \(\subset\) C vậy A\(\subset\)C
Vì: \(a=b;b=c\Rightarrow a=c\)(tích chất bắt cầu)
\(\Rightarrow A\subset B;B\subset C\Rightarrow A\subset C\)
tíc mình nha
Chứng minh bằng hình vẽ :
Vòng tròn A nằm trong vòng tròn B,vòng tròn B nằm trong vòng tròn C nên vòng tròn A nằm trong vòng tròn C,suy ra đpcm.
Đây là tính chất bắc cầu .
K MÌNH NHA
Chứng minh rằng nếu \(A\subset B,B\subset D\) thì A \(\subset\) D
Những quan hệ nào trong các quan hệ sau là đúng ?
a. \(A\subset A\cup B\)
b. \(A\subset A\cap B\)
c. \(A\cap B\subset A\cup B\)
d. \(A\cup B\subset B\)
e. \(A\cap B\subset A\)
chứng minh rằng nếu A \(\subset\) B ; B \(\subset\) D thì A\(\subset\) D
theo bài ra ta có:
A⊂B
B⊂D
=>A⊂D
tick hộ mik nha!
cái này thì hiển nhiên đúng rồi chứng minh làm gì nữa :)
Cho A, B là hai tập hợp khác rỗng phân biệt. Xem xét trong các mệnh đề sau, mệnh đề nào đúng ?
a) \(A\subset B\)\ A
b) \(A\subset A\cup B\)
c) \(A\cap B\subset A\cup B\)
d) A\ \(B\subset A\)
Cho \(A=(-4;5];B=\left(2m-1;m+3\right)\), tìm m sao cho:
a, \(A\subset B\)
b, \(B\subset A\)
c, \(A\cap B=\varnothing\)
d, \(A\cup B\) là một khoảng
a, \(A\subset B\Leftrightarrow\left\{{}\begin{matrix}m+3\ge5\\2m-1< -4\end{matrix}\right.\Rightarrow m\in\left\{\varnothing\right\}\)
b, \(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m+3\le5\\2m-1>-4\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m\le2\)
c, \(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}2m-1>5\\m+3\le-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>3\\m\le-7\end{matrix}\right.\)
d, \(A\cup B\) là một khoảng \(\Leftrightarrow\left\{{}\begin{matrix}m+3>5\\2m-1\le5\end{matrix}\right.\Leftrightarrow2< m\le3\)