giá trị nhỏ nhất của biểu thức
A=\(\sqrt{\left(2020-2x\right)^2}+\sqrt{\left(2019-2x\right)^2}-2\)2
Tính giá trị biểu thức
A= \(\left(4x^5+4x^4-5x^3+2x-2\right)^2+2020\) khi \(x=\dfrac{\sqrt{5}-1}{2}\)
Lời giải:
$x=\frac{\sqrt{5}-1}{2}$
$2x=\sqrt{5}-1$
$2x+1=\sqrt{5}\Rightarrow (2x+1)^2=5$
$\Leftrightarrow 4x^2+4x-4=0$
$\Leftrightarrow x^2+x-1=0$
Khi đó:
\((4x^5+4x^4-5x^3+2x-2)^2\)
\(=[4x^3(x^2+x-1)-x^3+2x-2]^2\)
\(=(-x^3+2x-2)^2=[-x(x^2+x+1)+(x^2+x-1)-1]^2\)
\(=(-1)^2=1\)
\(Bài\) \(1\)\(Cho\)\(a,b,c\ge0;a+b+c=6.\)TÌm giá trị ngỏ nhất của biểu thức:
\(M=\sqrt{\left(a+1\right)^3}+\sqrt{\left(b+2\right)^3}+\sqrt{\left(c+2\right)^3}\)
Bài 2: \(Cho\)\(x=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\).Tính giá trị biểu thức:
\(A=\left(x^6-3x^5-8x^4+16x^3+25x^2-2x-3\right)^{2020}+2019\left(x^4-4x^3+x^2+6x-3\right)^{2021}\)
Bài 3: Giải các phương trình sau:
\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
Tìm giá trị nhỏ nhất của biểu thức
\(C=\sqrt{\left(x+2017\right)^2}+\sqrt{\left(x+2018\right)^2}+\sqrt{\left(x+2019\right)^2}\)
C = ..................................................................... ( giống cái đề bài )
= ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )
= ( x + x + x ) + ( 2017 + 2018 + 2019 )
= 3x + 6054
Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0
( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0
( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0
SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0
dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018
Vậy C có GTNN là 0 khi x = - 2018
Xét số thực x. Timg giá trị nhỏ nhất của biểu thức
P=\(\frac{\sqrt{3\left(2x^2+2x+1\right)}}{3}+\frac{1}{\sqrt{2x^2+\left(3-\sqrt{3}\right)x+3}}+\frac{1}{\sqrt{2x^2+\left(3+\sqrt{3}\right)x}+3}\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Bài 2:
\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Ta có: \(P=x^2-2x+2020\)
\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)
\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)
=2026
Bài 1:
\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
=-6
Xét số thực x. Tìm giá trị nhỏ nhất cỉa biểu thức sau :
\(P=\frac{\sqrt{3\left(2x^2+2x+1\right)}}{3}+\frac{1}{2x^2+\left(3-\sqrt{3}\right)x+3}+\frac{1}{2x^2+\left(3+\sqrt{3}\right)x+3}\)
Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)
Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB
Gọi G là trọng tâm của tam giác ABC, ta có :
\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)
Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC
Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có
\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)
\(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\) (1)
Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\) (2)
\(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)
\(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)
\(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)
\(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\) (3)
Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)
Hơn nữa, bằng kiểm tra trực tiếp ta thấy \(P\ge\sqrt{3}\) khi x=0
Vậy min P=\(\sqrt{3}\)
Tính giá trị biểu thức
\(A=\left(\sqrt{2019}-\sqrt{2020}\right)\left(\sqrt{2019}+\sqrt{2020}\right)\)
\(A=\left(\sqrt{2019}-\sqrt{2020}\right)\left(\sqrt{2019}+\sqrt{2020}\right)\\ \rightarrow A=\left(\sqrt{2019}\right)^2-\left(\sqrt{2020}\right)^2\\ \rightarrow A=2019-2020\\ \rightarrow A=-1\)
Vậy \(A=-1\)
\(A=\left(\sqrt{2019}-\sqrt{2020}\right)\left(\sqrt{2019}+\sqrt{2020}\right)\)
\(=\left(\sqrt{2019}\right)^2-\left(\sqrt{2020}\right)^2\)
\(=\sqrt{2019^2}-\sqrt{2020^2}\)
\(=2019-2020\)
\(=-1\)
Vậy \(A=-1\)
\(A=\left(\sqrt{2019}-\sqrt{2020}\right)\left(\sqrt{2019}+\sqrt{2020}\right)\)
\(=\left(\sqrt{2019}\right)^2-\left(\sqrt{2020}\right)^2\)
\(=\sqrt{2019^2}-\sqrt{2020^2}\)
\(=2019-2020\)
\(=-1\)
Vậy \(A=-1\)
1) Giải phương trình
\(x^2\)\(+2x+1=\left(x+2\right)\sqrt{x^2+1}\)
2) Tìm giá trị nhỏ nhất của biểu thức P=\(\sqrt{x^2-2x+13}+4\sqrt{x-3}\)
1) \(x^2+2x+1=\left(x+2\right)\sqrt[]{x^2+1}\left(1\right)\)
\(\Leftrightarrow x^2+2x+1=x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\left(x\ge-2\right)\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\right)^2\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x=x^2\left(x^2+1\right)+4\left(x^2+1\right)+4x\left(x^2+1\right)\)
\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+x^2+4x^2+4+4x^3+4\)
\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+4x^3+5x^2+4x+4\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt[]{3}\left(Tm.x\ge-2\right)\)
Vậy nghiệm của phương trình \(\left(1\right)\) là \(x=\pm\sqrt[]{3}\)
2) \(P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\)
Ta có :
\(\sqrt[]{x^2-2x+13}=\sqrt[]{x^2-2x+1+12}=\sqrt[]{\left(x-1\right)^2+12}\ge\sqrt[]{12}=2\sqrt[]{3},\forall x\in R\)
\(4\sqrt[]{x-3}\ge0,\forall x\ge3\)
\(\Rightarrow P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\ge\sqrt[]{4+12}+0=4\left(khi.x=3\right),\forall x\ge3\)
Vậy \(Min\left(P\right)=4\left(tại.x=3\right)\)
tìm giá trị nhỏ nhất của
A=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}=5\)
B=\(\sqrt[]{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}\)
C=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x+\sqrt{4x-1}}\)
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
3.
$C\sqrt{2}=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x+2\sqrt{4x-1}}$
$=2\sqrt{(4x-1)+2\sqrt{4x-1}+1}=2\sqrt{(\sqrt{4x-1}+1)^2}$
$=2|\sqrt{4x-1}+1|$
Vì $\sqrt{4x-1}\geq 0$ nên $|\sqrt{4x-1}+1|\geq 1$
$\Rightarrow C\sqrt{2}\geq 2$
$\Rightarrow C\geq \sqrt{2}$
Vậy $C_{\min}=\sqrt{2}$. Giá trị này đạt tại $x=\frac{1}{4}$