/sqrt{72}+ \sqrt{4+1/2} - \sqrt{32} -\sqrt{162}
\(\sqrt{72}+\sqrt{4\dfrac{1}{2}-\sqrt{32}}-\sqrt{162}\)
\(-\dfrac{6\sqrt{2}-\sqrt{\left(9-8\sqrt{2}\right)\cdot2}}{2}\)
\(\sqrt{2.36}+\sqrt{2.\dfrac{9}{4}}-\sqrt{2.16}-\sqrt{2.81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\\ =\sqrt{\dfrac{4\cdot2+1}{2}}+\sqrt{4^2\cdot2}-\sqrt{6^2\cdot2}+\sqrt{9^2\cdot2}\\ =\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+7\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+\dfrac{7\sqrt{2}\cdot\sqrt{2}}{\sqrt{2}}\\ =\dfrac{17}{\sqrt{2}}\)
\(=\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3}{2}\sqrt{2}+7\sqrt{2}=\dfrac{17}{2}\sqrt{2}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)
\(=\sqrt{\dfrac{9}{2}}+\sqrt{4^2.2}-\sqrt{6^2.2}+\sqrt{9^2.2}\)
\(=\dfrac{3}{\sqrt{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3\sqrt{2}}{2}+7\sqrt{2}=\dfrac{3\sqrt{2}+14\sqrt{2}}{2}=\dfrac{17\sqrt{2}}{2}\)
6) (3\(\sqrt{2}\) -\(\sqrt{3}\))(\(\sqrt{3}\)+3\(\sqrt{2}\))
7) \(\sqrt{72}\)+\(\sqrt{4\dfrac{1}{2}}\) - \(\sqrt{32}\) - \(\sqrt{162}\)
6: Ta có: \(\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)\)
=18-3
=15
7: Ta có: \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
\(=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}\)
\(=-\dfrac{11}{2}\sqrt{2}\)
tính
A=\(\left(1-\sqrt{7}\right).\dfrac{\sqrt{7}+7}{2\sqrt{7}}\)
B=\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
C=\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
D=\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
E=\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)
b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)
c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
Rút gọn:
\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
\(\sqrt{2\cdot36}+\sqrt{2\cdot\dfrac{9}{4}}-\sqrt{2\cdot16}-\sqrt{2\cdot81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)
\(\)Bài 1: Rút gọn các biểu thức sau
a) A= \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
b) B= \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
c) C= \(\sqrt{72}+\sqrt{4\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
a, A = \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
= \(3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
= \(-4\sqrt{3}\)
b, B = \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
= \(4\sqrt{2}-5\sqrt{2}+3\sqrt{2}\)
= \(2\sqrt{2}\)
Rút gọn các biểu thức sau:
a) \(\sqrt{4\frac{1}{2}}-\sqrt{32}+\sqrt{72}-\sqrt{162}\)
b) \(\left(\frac{1}{\sqrt{5}-3}-\frac{1}{\sqrt{5}+3}\right)\times\frac{3-\sqrt{3}}{1-\sqrt{3}}\)
c) \(\left(1-\frac{4\sqrt{a}}{a-1}+\frac{1}{\sqrt{a}-1}\right):\frac{a-2\sqrt{a}}{a-1}\)
a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)
\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)
\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)
b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)
\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)
c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)
\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)
tính
a. \(\sqrt{200}-\sqrt{32}+\sqrt{72}-\sqrt{162}\)
b. \(\sqrt{63}+\sqrt{175}+\sqrt{112}\)
Câu a : \(\sqrt{200}-\sqrt{32}+\sqrt{72}-\sqrt{162}\)
\(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)
\(=3\sqrt{2}\)
Câu b : \(\sqrt{63}+\sqrt{175}+\sqrt{112}\)
\(=3\sqrt{7}+5\sqrt{7}+4\sqrt{7}\)
\(=12\sqrt{7}\)
Học tốt !!!!!!!!!!!!!
2 . rút gọn biểu thức
a. \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b. \(\sqrt{175}-\sqrt{112}+\sqrt{63}\)
c. \(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\)
d. \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
e. \(5\sqrt{\dfrac{1}{5}+}\dfrac{1}{5}\sqrt{20}+\sqrt{5}\)
f. \(\sqrt{\dfrac{1}{5}}+\sqrt{4,5}+\sqrt{12,5}\)
g. \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\dfrac{1}{3}}\)
m. \(3\sqrt{5a}-\sqrt{20a}+\sqrt{a}+4\sqrt{45a}\)
n. \(3\sqrt{8}-\sqrt{18}-5\sqrt{\dfrac{1}{2}}+\sqrt{50}\)
i. \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}+\sqrt{63}-\sqrt{162}\)
a: \(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)
b: \(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)
c: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}=\dfrac{1}{6}\sqrt{6}\)
d: \(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
e: \(=\sqrt{5}+\dfrac{2}{5}\sqrt{5}+\sqrt{5}=2.4\sqrt{5}\)
f: \(=\dfrac{1}{5}\sqrt{5}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{1}{5}\sqrt{5}+4\sqrt{2}\)