Những câu hỏi liên quan
H24
Xem chi tiết
NL
26 tháng 7 2021 lúc 9:44

a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết

b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết

Bình luận (0)
H24
26 tháng 7 2021 lúc 15:23

e viết nhầm đề

a) n4-10n3+35n2-50n+72 chia hết cho 24 với n nguyên

b) n4+4n3-8n2-16n+768 chia hết cho 384 với n chẵn

Bình luận (0)
VT
Xem chi tiết
HP
14 tháng 8 2021 lúc 20:09

1.

\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)

Mặt khác:

\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)

\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)

Bình luận (0)
HP
14 tháng 8 2021 lúc 20:18

2.

Đề đúng chưa.

Thay n=7 vào thì biểu thức bằng 945 không chia hết cho 384.

Bình luận (5)
NP
14 tháng 8 2021 lúc 20:26

1.

1028+8=(103)25+8=825.12525+8⋮81028+8=(103)25+8=825.12525+8⋮8

Mặt khác:

1028+8=1028−1+9=(10−1).A+9=9A+9⋮91028+8=1028−1+9=(10−1).A+9=9A+9⋮9

Mà (8;9)=1⇒1028+8⋮72

Bình luận (0)
NP
Xem chi tiết
NC
9 tháng 10 2019 lúc 9:58

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
VR
27 tháng 1 2021 lúc 22:46

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

Bình luận (0)
TC
Xem chi tiết
NT
20 tháng 1 2020 lúc 18:12

Bạn tham khảo tại đây nhé!! 

olm.vn/hoi-dap/detail/195135296784.html

Bình luận (0)
 Khách vãng lai đã xóa
CD
20 tháng 1 2020 lúc 18:33

\(n^4-4n^3-4n^2+16n=n\left(n^3-4n^2-4n+16\right)\)

\(=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]=n\left(n-4\right)\left(n^2-4\right)=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)

Vì n là số tự nhiên chẵn \(\Rightarrow n=2k\)\(k\inℕ\))

\(\Rightarrow2k\left(2k-4\right)\left(2k-2\right)\left(2k+2\right)=16k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)

Vì \(k\)\(k-2\)\(k-1\)\(k+1\)là 4 số tự nhiên liên tiếp

\(\Rightarrow\)Luôn tồn tại ít nhất 2 số chẵn liên tiếp \(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮8\)

Vì \(k\)\(k-1\)\(k+1\)là 3 số tự nhiên liên tiếp \(\Rightarrow k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮3\)

mà \(\left(3;8\right)=1\)\(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮24\)

\(\Rightarrow16k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮384\)

hay \(n^4-4n^3-4n^2+16n⋮384\)

Bình luận (0)
 Khách vãng lai đã xóa
XL
Xem chi tiết
NL
5 tháng 5 2021 lúc 17:13

Đặt \(A=n^4-10n^2+9\)

\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3

\(\Rightarrow A⋮3\)

Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Do n lẻ, đặt \(n=2k+1\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8

\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)

Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)

Bình luận (1)
NH
Xem chi tiết
H24
Xem chi tiết
NG
27 tháng 3 2016 lúc 17:42

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

Bình luận (0)
NN
Xem chi tiết
ZZ
7 tháng 4 2019 lúc 20:42

n>4 nữa nha bạn

Ta có:\(A=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-3\right)\left(n^2-4\right)\)

\(=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)

Do n là số chẵn và n>4 nên đặt  \(n=2k+2\left(k>1\right)\).

\(\Rightarrow A=\left(2k+2\right)\left(2k+4\right)\left(2k-2\right)2k\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

\(=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

Do  \(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên dương liên tiếp nên chúng chia hết cho 2.3.4=24

Vậy A chia hết cho 16*24=384(đpcm)

Bình luận (0)
H24
Xem chi tiết
XO
28 tháng 1 2021 lúc 6:31

Đặt A = n4 - 4n3 - 4n2 + 16n

= n3(n - 4) - 4n(n - 4)

= (n - 4)(n3 - 4n)

= (n - 4)n(n2 - 4)

= (n - 4)n(n - 2)(n + 2)

= (n - 4)(n - 2)n(n + 2) 

Vì n chẵn => n = 2k (k \(\inℕ^∗\))

Khi đó A = (2k - 4)(2k - 2)2k(2k + 2)

= 2(k - 2).2(k - 1).2k.2(k + 1)

= 16(k - 2)(k - 1)k(k + 1) 

Vì (k - 2)(k - 1)k(k + 1) là tích 4 số nguyên liên tiếp 

=> Tồn tại 2 số chia hết cho 2 ; 4 

Mà  n > 4 => k > 2 

 => (k - 2)(k - 1).k(k + 1) \(⋮\)

lại có (k - 2)(k - 1)k(k + 1)  \(⋮\)3 (tích 4 số liên tiếp => tồn tại 1 số chia hết cho 3)

Mà ƯCLN(8;3) = 1

=> (k  - 2)(k - 1)k(k + 1) \(⋮\)8.3 = 24

=> A \(⋮\)384 

Bình luận (0)
 Khách vãng lai đã xóa
LD
28 tháng 1 2021 lúc 10:37

n chẵn > 4 mà Xyz ? 

Bình luận (0)
 Khách vãng lai đã xóa