Bài 4: Tìm a,b sao cho
a) \(f\left(x\right)=3x^2+ax+27\) chia cho \(g\left(x\right)=2x-3\)dư 2
Bài 4: Tìm a,b sao cho
a) \(f\left(x\right)=3x^2+ax+27\) chia cho \(g\left(x\right)=2x-3\)dư 2
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^2-4.5x+\left(a+4.5\right)x-1.5a-6.75+1.5a+33.75}{2x-3}\)
\(=1.5x+\left(a+4.5\right)+\dfrac{1.5a+33.75}{2x-3}\)
Để dư là 2 thì 1,5a+33,75=2
=>1,5a=-31,75
=>a=-127/6
Tìm số a sao cho:
a. \(\left(x^4+ax^2+1\right)⋮\left(x^2+2x+1\right)\)
b. \(3x^2+ax+27\)chia cho x + 5 có số dư bằng 2
Bài 1 :
Tìm tất cả cac số nguyên n để \(2n^2+n-7\) chia hết cho \(n-2\)
Bài 2 : Tìm các hằng số a và b sao cho đa thức f(x) chia hết cho đa thức g(x)
a) \(f\left(x\right)=\left(x^4+ax^2+b\right)\) ; \(g\left(x\right)=\left(x^2-x+1\right)\)
b) \(f\left(x\right)=ax^3+bx^2+5x-50\) ; \(g\left(x\right)=x^2+3x+3\)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)
Làm nốt
sai r.chờ tí,rảnh t làm lại cho,giờ làm câu 2 đã
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5
Tìm a sao cho:
a) \(\left(27x^2+a\right)⋮\left(3x+2\right)\)
b) \(\left(x^4+ax^2+1\right)⋮\left(x^2+2x+1\right)\)
c) \(\left(3x^2+ã+27\right)\) chia cho x+5 dư 2
;
để \(27x^2+a⋮3x+2\) thì
a+12=0
a=-12
Xác định a, b để \(f\left(x\right)⋮g\left(x\right)\)
a) f(x)= \(2x^3-3x^2+ax+b\) ; \(g\left(x\right)=x^2+x+2\)
b) \(f\left(x\right)=2x^4+ax^2+b\) ; \(g\left(x\right)=x^2-x-3\)
c) \(f\left(x\right)=3x^4-8x^3-10x^2+ax-b\) ; \(g\left(x\right)=3x^2-2x+1\)
d) \(f\left(x\right)=ax^3+bx^2-11x+30\) ; \(g\left(x\right)=x^2-3x-10\)
Cho 2 đa thức \(f\left(x\right)=2x^2+ax+4\) và \(g\left(x\right)=x^2-5x-b\) (\(a,b\) là hằng số)
Tìm các hệ số \(a,b\) sao cho \(f\left(1\right)=g\left(2\right)\) và \(f\left(-1\right)=g\left(5\right)\)
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
Tìm số a để:
a.\(\left(x^4+ax^2+1\right)⋮\left(x^2+2x+1\right)\)
b. \(3x^2+ax+27\)chia cho x + 5 có số dư bằng 2
Tìm số a sao cho:
a. \(\left(x^4+ax^2+1\right)⋮\left(x^2+2x+1\right)\)
b. \(3x^2+ax+27\)chia cho x + 5 có số dư bằng 2
Gọi đa thức \(x^4+ax^2+1\) là \(f\left(x\right)\). Theo bài ra ta có phương trình:
\(f\left(-1\right)=\left(-1\right)^4+a\left(-1\right)^2+1=0\)
<=>\(f\left(-1\right)=1+a+1=0\)
\(\Leftrightarrow f\left(-1\right)=a=-2\)
\(\Rightarrow a=-2\)
Vậy \(a=-2\)
b)
Gọi đa thức \(3x^2+ax+27\) là \(f\left(x\right)\), \(Q\left(x\right)\) là thương của \(f\left(x\right)\) khi chia cho \(x+5\) được dư là \(2\), theo bài ra ta có phương trình:
\(f\left(x\right)=3x^2+ax+27=\left(x+5\right).Q\left(x\right)+2\) (*)
\(x=-5\) là nghiệm của \(x+5\), thay nghiệm x=-5 vào (*), ta được:
\(f\left(-5\right)=3.\left(-5\right)^2+a\left(-5\right)+27=\left(-5+5\right).Q\left(x\right)+2\)
<=>\(f\left(-5\right)=75-5a+27=2\)
<=>\(f\left(-5\right)=-5a=-100\)
<=>\(f\left(-5\right)=a=20\)
=> \(a=20\)
Vậy \(a=20\)
Chúc bạn học tốt! Cứu bạn rồi đó nghen! ^^