Những câu hỏi liên quan
ND
Xem chi tiết
AN
12 tháng 8 2017 lúc 10:11

Ta có:

\(\left(4x+9y+16z\right)\left(\frac{1}{x}+\frac{25}{y}+\frac{64}{z}\right)\ge\left(\sqrt{\frac{4x}{x}}+\sqrt{\frac{9y.25}{y}}+\sqrt{\frac{16z.64}{z}}\right)^2\)

\(\Leftrightarrow49\left(\frac{1}{x}+\frac{25}{y}+\frac{64}{z}\right)\ge\left(2+15+32\right)^2\)

\(\Leftrightarrow\frac{1}{x}+\frac{25}{y}+\frac{64}{z}\ge49\)

Dấu = xảy ra tại \(x=\frac{1}{2};y=\frac{5}{3};z=2\)

Bình luận (0)
LA
Xem chi tiết
TH
Xem chi tiết
PB
Xem chi tiết
CT
18 tháng 4 2017 lúc 4:16

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 2 2017 lúc 2:08

Bình luận (0)
NL
Xem chi tiết
NT
Xem chi tiết
H24
1 tháng 1 2019 lúc 12:32

Áp dụng bđt Svác xơ, ta có:

\(A\ge\dfrac{\left(\sqrt{2x}+\sqrt{3y}+\sqrt{4z}\right)^2}{2\left(4x^2+9y^2+16z^2\right)}\)\(=\dfrac{2x+3y+4z+2\left(\sqrt{6xy}+\sqrt{12yz}+\sqrt{8xz}\right)}{2}\)\(\ge\dfrac{1+2\left(3\sqrt[3]{\sqrt{576x^2y^2z^2}}\right)}{2}\)(BĐT Cô-si)\(\ge\dfrac{1+6}{2}=\dfrac{7}{2}\)

Vậy Amin=\(\dfrac{7}{2}\Leftrightarrow\)\(\left\{{}\begin{matrix}\dfrac{2x}{9y^2+16z^2}=\dfrac{3y}{4x^2+16z^2}=\dfrac{4z}{4x^2+9y^2}\\\sqrt{6xy}=\sqrt{12yz}=\sqrt{8xz}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}y=2z\)

Bình luận (3)
H24
1 tháng 1 2019 lúc 17:38

Viết lại bài toán: Cho \(a^2+b^2+c^2=1\). Tìm max \(\sum\dfrac{a}{b^2+c^2}\)

với a=2x, b=3y, c=4z.

Áp dụng BĐT AM-GM:

\(a\left(b^2+c^2\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a^2\left(1-a^2\right)\left(1-a^2\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\dfrac{8}{27}}=\dfrac{2}{3\sqrt{3}}\)

Do đó \(VT\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Vậy \(A_{Min}=\dfrac{3\sqrt{3}}{2}\)

Bình luận (0)
TM
Xem chi tiết
LF
21 tháng 9 2017 lúc 23:29

Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)

\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)

\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)

\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)

Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)

Bình luận (0)
UK
21 tháng 9 2017 lúc 17:39

2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)

Bình luận (0)
H24
Xem chi tiết
PQ
25 tháng 7 2019 lúc 9:38

từ câu a) ta có: \(\orbr{\begin{cases}x=y+1\\x=y-1\end{cases}}\) và \(\hept{\begin{cases}x-y=t-z\\y=t\end{cases}}\) (3) 

+) Với \(x=y+1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y+1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z+1\\y=t\end{cases}}\)

\(\Rightarrow\)\(x=y+1=z+2\) ( x,y,z là 3 số nguyên liên tiếp ) 

+) Với \(x=y-1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y-1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z-1\\y=t\end{cases}}\)

\(\Rightarrow\)\(x=y-1=z-2\) ( x,y,z là 3 số nguyên liên tiếp ) 

Bình luận (0)
PQ
25 tháng 7 2019 lúc 9:30

\(x+z=y+t\)\(\Leftrightarrow\)\(x^2+z^2+2xz=y^2+t^2+2yt\) (1) 

Mà \(xz+1=yt\)\(\Leftrightarrow\)\(2xz+2=2yt\)

(1) \(\Leftrightarrow\)\(x^2+z^2+2yt=y^2+t^2+2xz+4\)

\(\Leftrightarrow\)\(\left(x-z\right)^2-\left(y-t\right)^2=4\)

\(\Leftrightarrow\)\(\left(x-z-y+t\right)\left(x-z+y-t\right)=4\) (2) 

Lại có: \(x+z=y+t\)\(\Rightarrow\)\(\hept{\begin{cases}x-y=t-z\\x-t=y-z\end{cases}}\)

(2) \(\Leftrightarrow\)\(\left(x-y\right)\left(x-t\right)=1\)

TH1: \(\hept{\begin{cases}x-y=1\\x-t=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\x=t+1\end{cases}}\Leftrightarrow y=t\)

TH2: \(\hept{\begin{cases}x-y=-1\\x-t=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\x=t-1\end{cases}}\Leftrightarrow y=t\)

Bình luận (0)