3x=5y=8z và x+y+z=158. tìm x y z
Tìm x,y,z biết :
3x=5y=8z và x+y+z=158
Giúp mik nha! Đang cần gấp
Thank mn❤️
Ta có : 3x = 5y = 8z => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\)
Đặt \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}=k\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=k\\\frac{y}{\frac{1}{5}}=k\\\frac{z}{\frac{1}{8}}=k\end{cases}}\)
=> \(x=\frac{1}{3}k,y=\frac{1}{5}k,z=\frac{1}{8}k\)
=> \(x+y+z=\frac{1}{3}k+\frac{1}{5}k+\frac{1}{8}k\)
=> \(\frac{79}{120}k=158\)
=> \(k=240\)
Do đó : \(x=\frac{1}{3}k=\frac{1}{3}\cdot240=80\)
\(y=\frac{1}{5}k=\frac{1}{5}\cdot240=48\)
\(z=\frac{1}{8}k=\frac{1}{8}\cdot240=30\)
Vậy x = 80,y = 48,z = 30
3x = y; 5y = 4z và 6x + 7y + 8z = 456
(Tìm x, y, z)
\(\Rightarrow\frac{x}{1}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6.4+7.12+8.15}=\frac{456}{228}=2\)
=> x= 4.2 =8
y = 12.2 =24
z = 15.2 =30
Tìm x, y, z biết:
3x = y; 5y = 4z và 6x + 7y + 8z = 456
tìm x,,y,z
3x=y ; 5y=4z và 6x+7y+8z=456
3x=y
=>x/1=y/3
=>x/4=y/12
5y=4z
=>y/4=z/5
=>y/12=z/15
=>x/4=y/12=z/15
=>6x/24=7y/84=8z/120
áp dụng tc dãy ts = nhau ta có :
6x/24=7y/84=8z/120 = 6x+7y+8z/24+84+120=456/228=2
=>x/4=2=>x=8
=>y/12=2=>y=24
=>z/15=2=>z=30
vậy ...
3x=y nên x=y/3 nên x/4=y/12
5y=4z nên y/4=z/5 nên y/12=z/15
=>x/4=y/12=z/15
nên 6x/24=7y/84=8z/120
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
6x/24=7y/84=8z/120=(6x+7y+8z)/(24+84+120)=456/228=2
Do đó, x/4=2 nên x=2*4=8
y/12=2 nên y=2*12=24
z/15=2 nên z=2*15=30
3x=y ; 5y=4z và 6x + 7y + 8z =456.Hãy tìm x,y,z
Giải:
Ta có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}=\frac{6x+7y+8z}{24+84+120}=\frac{456}{228}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{12}=2\Rightarrow y=24\)
+) \(\frac{z}{15}=2\Rightarrow z=30\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(8;24;30\right)\)
Ta có: 3x =y
\(\Rightarrow\frac{x}{1}=\frac{y}{3}\) \(\Rightarrow\frac{x}{4}=\frac{y}{12}\) (1)
5y = 4z
\(\Rightarrow\frac{y}{4}=\frac{z}{5}\\ \Rightarrow\frac{y}{12}=\frac{z}{15}\) (2)
Từ (1),(2) ta \(\Rightarrow\) \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\) Do đó ta có : \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}=\frac{6x+7y+8z}{24+84+120}=\frac{456}{228}=2\)
Từ đó\(\Rightarrow\) x =2*4=8
y=2*12=21
z=2*15=30
Vậy:(x;y;z) là (8;21;30)
Chúc bạn học tốt.
a) 3x = 5y = 7z và x+ y + z = 10
b) 6x = 5y ; 7y = 8z và 3x + 2y + 4z = 12
c) x : y : z = 1: 2 : 3 và x\(^3\) + y\(^3\) + 2\(^3\) = 36
d) \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và 3x\(^3\) + y\(^3\) = 51
giúp mik vs rùi mik tick cho
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
tìm x,y,z biết:
3x=y;5y=4z và 6x+7y+8z=456
Giải:
Ta có: 3x=y⇒x1=y3⇒x4=y12
5y=4z⇒y4=z5⇒y12=z15
⇒x4=y12=z15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x4=y12=z15=6x24=7y84=8z120=6x+7y+8z24+84+120=456228=2
+) x4=2⇒x=8
+) y12=2⇒y=24
+) z15=2⇒z=30
Vậy bộ số (x;y;z) là (8;24;30)
vì 3x=y;5y=4z tahy vào ta đc: 6x+7y+8z=456
<=> 2y + 7y + 10y = 456 ( 3x=y=> 6x = 2y <=> 5y=4z=>8z= 10y)
<=> 19y=456 => y = 24 => x = 24*3=72 => z=24*5/4 = 30
1) Tìm x,y,z biết:
a) x/7=y/3vaf x-24=y
b) x-1/2005=3-y/2006 và x-y=4009
c) x/3=y/5=z/7 và 2x+3y-z=-14
d) 3x=y; 5y=4z và 6x+7y+8z=456
B1
a)2-3x/x-2=-7/5
b)2x3x-405=3x-1
c)x-1/2=y-2/5=z-3/4 và 2x+3y-z=50
d3x=y,5y=4z và 6x+7y+8z=456
a: \(\Leftrightarrow-15x+10=-7x+14\)
=>-8x=4
hay x=-1/2
\(a,\dfrac{2-3x}{x-2}=-\dfrac{7}{5}\left(x\ne2\right)\\ \Leftrightarrow14-7x=10-15x\\ \Leftrightarrow8x=-4\Leftrightarrow x=-2\left(tm\right)\\ c,\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{5}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{2\cdot2+5\cdot3-4}=\dfrac{45}{15}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=6\\y-2=15\\z-3=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=17\\z=15\end{matrix}\right.\\ d,\Leftrightarrow\dfrac{x}{1}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{6x+7y+8z}{24+84+120}=\dfrac{456}{228}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=24\\z=30\end{matrix}\right.\)