Cho m,n là hai số nguyen dương ss giá trị của 2 biểu thức sau
A=2m3+2n2
B=4mn2
Cho biểu thức P(n) = an+b.n+c, trong đó a,b,c là những số nguyên. Biết rằng với mọi giá trị nguyên dương n, giá trị của biểu thức P(n) luôn chia hết cho một số nguyên dương m cho trước. CMR b2 phải chia hết cho m
Bài 1: Làm tính chia
a) (5x3-14x2+12x+8):(x+2)
b) (2x4- 3x3+4x2+1): (x2-1)
Bài 2: Tìm a để phép chia là phép chia hết
11x2 - 5x - a chia hết cho x + 5
Bài 3: Tìm giá trị nguyên của n để giá trị của biểu thức 2n2 + n – 7 chia hết cho giá trị của biểu thức n – 2
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ac=7 . Gọi m là giá trị nhỏ nhất của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
a) Biết m đạt giá trị nhỏ nhất khi (a;b;c)=(m;n;p). Tính giá trị của biểu thức P=2p+9n+1945m
b)Biết m đạt gái tị nhỏ nhất thì a=(m/n).c , trong đó m,n là các số nguyên dương và phân số m/n tối giản . Tính giá tị biểu thức S=2m+5n
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
Cho m,n là các số nguyên dương. Hãy so sánh giá trị của hai biểu thức sau:
A= 2m3+3n3. B= 4mn2
Xét trường hợp thoy:))
Xét \(m>n\).Đặt \(m=n+k\) với \(k\in N\)
Xét \(A-B=2m^3+3n^3-4mn^2\)
\(A-B=2\left(n+k\right)^3+3n^3-4\left(n+k\right)n^2\)
\(A-B=2n^3+6n^2k+6nk^2+2k^3+3n^3-4n^3-4n^2k\)
\(A-B=n^3+2n^2k+6nk^2+2k^3>0\)
Xét \(m< n\).Đặt \(n=m+k\)
Ta có:
\(A-B=2m^3+3n^3-4mn^2\)
\(A-B=2m^3+3\left(m+k\right)^3-4m\left(m+k\right)^2\)
\(A-B=2m^3+3m^3+9m^2k+9mk^2+3k^3-4m^3-8m^2k-4mk^2\)
\(A-B=m^3+m^2k+5mk^2+3k^2>0\)
Xét \(m=n\)
Ta có:
\(A=2m^3+3n^3=2m^3+3m^3=5m^3\)
\(B=4mn^2=4mm^2=4m^3\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Cho m,n là các số nguyên dương. Hãy so sánh giá trị của hai biểu thức : A= 2m3+2n3 và B= 4mn2
Ta có:
A-B=2m^3+3m^3-4mn^2
TH1
Nếu m > n. Đặt m=n+x
óA-B=2(n+x)^3+3m^3-4(n+x)n^2
óA-B=2(n^3+3n^2x+2nx^2+x^3)=3m^3-4n^3-4n^2x
óA-B=n^3+2n^2x+6nx^2+2x^3>0
Vậy A>B
TH2
Nếu m < n. Đặt n=m+y
óA-B=2m^3+3(m+y)^3-4m(m+y)^2
óA-B=2m^3+3(m^3+3m^2y+3my^2+y^3)-4m^3-8m^2y-4my^2
óA-B=m^3+m^2y+5my^2+3y^3> 0
Vậy A > B
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
Tìm nÎZ để giá trị của biểu thức n3 -2n2 + 3n + 3 chia hết cho giá trị của biểu thức n-1
b) Tìm a để đa thức x4 + 6x3 + 7x2 - 6x + a chia hết cho đa thức x2 + 3x - 1
\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)
Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)
tìm giá trị nguyên của n để các giá trị nguyen n để giá trị của các biểu thức sau là một phân số
A=7phan n-1, B = 5n+1 phan n-5
Để A nhận giá trị nguyên thì
\(\Leftrightarrow\)7 chia hết cho n-1
\(\Rightarrow n-1\inƯ\left(7\right)\)={-1;-7;1;7}
Ta có bảng giá trị
n-1 | -1 | -7 | 1 | 7 |
n | 0 | -6 | 2 | 8 |
Cho a, b là hai số dương khác 1. Đặt log a b = m . Tính theo m giá trị của biểu thức P = log a b - log b a 3
A. P = m 2 - 12 2 m
B. P = m 2 - 6 m
C. P = m 2 - 12 m
D. P = 4 m 2 - 3 2 m
cho m,n là 2 số nguyên dương so sánh giá trị của 2 biểu thức sau
A=2m3+3n3
B=4mn2