Những câu hỏi liên quan
2P
Xem chi tiết
NA
2 tháng 3 2023 lúc 14:59

\(x^2y^2-x^2-3y^2-2x-1=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)

Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.

Đặt \(x^2-3=a^2\) (a là số tự nhiên).

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)

Ta có x+a>x-a. Lập bảng:

x+a3-1
x-a1-3
x2-2

Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)

Với \(x=-2\)\(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)

Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)

 

Bình luận (0)
LL
Xem chi tiết
T2
Xem chi tiết
KT
2 tháng 1 2018 lúc 20:12

           \(x^2-2xy+2y^2-2x+6y+5=0\)

\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y^2+2y+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\)\(x^2-2x\left(y+1\right)+\left(y+1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\)\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-y-1=0\\y+2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)

Bình luận (0)
BX
2 tháng 1 2018 lúc 20:07

\(\frac{ }{ }\)

  
  
  
Bình luận (0)
H24

\(x^2-2xy+2y^2-2x+6y+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+y^2+4y+4=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)

Bình luận (0)
NL
Xem chi tiết
HT
27 tháng 5 2017 lúc 21:45

<=>\(x^2+2x\left(y-1\right)-3y^2+6y-8=0\)

coi phương trình là phương trình bậc 2 theo ẩn x nên ta có

\(\Delta^'=\left(y-1\right)^2+3y^2-6y+8\)

\(\Delta^'=4y^2-8y+9=\left(2y-4\right)^2-7\)

để phương trình có nghiệm x ,y nguyên thì \(\Delta^'=k^2\)

với k là số tự nhiên

\(\left(2y-4\right)^2-7=k^2\Leftrightarrow\left(2y-4+k\right)\left(2y-4-k\right)=7\)

khi đó (2y-4+k) và (2y-4-k) là ước của 7 là (1,7) do đó ta có hệ

\(\hept{\begin{cases}2y-4+k=7\\2y-4-k=1\end{cases}}\Leftrightarrow4y=16\Leftrightarrow y=4\)

với y=4 thay vào ta có 

\(\Delta^'=\left(2.4-4\right)^2-7=9\)

\(\orbr{\begin{cases}x=\left(1-y\right)-3=1-4-3=-6\\x=\left(1-y\right)+3=1-4+3=0\end{cases}}\)

vậy (x,y)= (0,4) hoặc (-6,4)

Bình luận (0)
KN
Xem chi tiết
TL
1 tháng 3 2020 lúc 13:48

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
Xem chi tiết
XO
16 tháng 1 2023 lúc 22:25

x2 - 3y2 + 2xy + 2x - 4y - 7 = 0

<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0

<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0

<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0

<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23

<=> (2x + 2y + 2)2 - (4y + 3)2 = 23

<=> (2x + 6y + 5)(2x - 2y - 1) = 23

\(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\) 

Lập bảng : 

2x + 6y + 5 1 23 -1 -23
2x - 2y - 1 23 1 -23 -1
x 17/2(loại) 3 -9 -7/2(loại)
y   2 2  

Vậy (x;y) = (3;2) ; (-9;2) 

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 1 2020 lúc 11:28

Bình luận (0)
TP
Xem chi tiết
KS
9 tháng 6 2023 lúc 21:36

`2xy^2 + 2x + 3y^2 = 4`

`<=> 2x(y^2 + 1) + 3(y^1 + 1) = 7`

`<=> (2x + 3)(y^2 + 1) = 7`

`=> (2x+3),(y^2 + 1) \in Ư(7) = {-7;-1;1;7}`

Mà `y^2 + 1 \ge 1` nên không thể nhận giá trị âm, xét `2` trường hợp:

`-` Trường hợp `1:`

`2x + 3 = 7 <=> 2x = 4 <=> x = 2(TM)`

`y^2 + 1 = 1 <=> y^2 = 0 <=> y = 0 (TM)`

`-` Trường hợp `2:`

`2x + 3 = 1 <=> 2x = -2 <=> x = -1 (TM)`

`y^2 + 1 = 7 <=> y^2 = 6 <=> y = +- \sqrt{6}(Loại)`

Vậy `(x;y)=(2;0)`

Bình luận (1)
NL
Xem chi tiết
NT
23 tháng 9 2021 lúc 15:30

a: \(x^2+3y^2-4x+6y+7=0\)

\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)

Bình luận (0)