Những câu hỏi liên quan
DB
Xem chi tiết
HN
14 tháng 9 2016 lúc 17:27

Chia làm hai trường hợp : 

TH1. Nếu x = y = z = 0 thì thỏa mãn đề bài.

TH2. Nếu \(x,y,z\ne0\) thì ta có : \(x=\sqrt{7}y-\sqrt{5}x\) . 

Dễ dàng chứng minh được \(\sqrt{5}\) và \(\sqrt{7}\) là các số vô tỉ . Mặt khác vì \(x,y,z\ne0\) nên \(\sqrt{7}y-\sqrt{5}x\) là số vô tỉ (Vô lí vì x là số hữu tỉ)

Vậy trường hợp này không xảy ra.

Vậy x = y = z = 0

Bình luận (0)
TT
Xem chi tiết
KT
Xem chi tiết
FT
Xem chi tiết
BA
Xem chi tiết
DH
24 tháng 5 2019 lúc 12:35

Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)

\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)

Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)

                                    \(=\left(x-y+z\right)\left(x+y+z\right)\)

Vì   \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa) 

Kết luận...

Bình luận (0)
TD
18 tháng 10 2020 lúc 22:12

ảnh đẹp

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
TT
Xem chi tiết
HH
Xem chi tiết
NM
Xem chi tiết
H24
10 tháng 10 2021 lúc 10:07

Tham khảo nha ông:

undefined

Bình luận (0)