a, 6x^3 - 3x^2 + 2|x| + 4 với x = -2/3
tính A =6x^3 - 3x^2 +2|x| +4 với x= -2/3
Thay \(x=-\dfrac{2}{3}\) vào A ta có:
\(A=6\cdot\left(-\dfrac{2}{3}\right)^3-3\cdot\left(-\dfrac{2}{3}\right)^2+2\cdot\left|-\dfrac{2}{3}\right|+4\)
\(A=6\cdot-\dfrac{8}{27}-3\cdot\dfrac{4}{9}+2\cdot\dfrac{2}{3}+4\)
\(A=-\dfrac{16}{9}-\dfrac{4}{3}+\dfrac{4}{3}+4\)
\(A=\dfrac{-16}{9}+4\)
\(A=\dfrac{20}{9}\)
Vậy: ....
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 6x^3 - x^2 - 486x + 81
b x^3 - 5x^2+ 3x + 9
c x^3 + 3x^2 +6x + 4
d x^3 + 3x^2 + 6x + 4
giúp mk với
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 6x^3 - x^2 - 486x + 81
b x^3 - 5x^2+ 3x + 9
c x^3 + 3x^2 +6x + 4
d x^3 + 3x^2 + 6x + 4
giúp mk với
a. 6x3-x2-486x+81
= 6x3-54x2+53x2-477x-9x+81
= 6x2.(x-9)+53x.(x-9)-9.(x-9)
= (x-9).(6x2+53x-9)
= (x-9)(6x2+54x-x-9)
=(x-9)[6x.(x+9)-(x+9)]=(x-9)(x+9)(6x-1)
b. x3-5x2+3x+9
= x3+x2-6x2-6x+9x+9
=x2.(x+1)-6x.(x+1)+9.(x+1)
=(x+1)(x2-6x+9)=(x+1)(x-3)2
c. x3+3x2+6x+4
= x3+x2+2x2+2x+4x+4
= x2.(x+1)+2x.(x+1)+4.(x+1)
= (x+1)(x2+2x+4)
d.
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
a) (x^2+4)(x+2)(x-2)-(x^2+3)(x^2-3)
b)(3x-2)(9x^2+6x+4)-3(9x^3-2)
c)(3x+5)^2+(6x+10)(2-3x)+(2-3x)^2
a: \(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)
\(=x^4-16-x^4+9=-7\)
b: \(=27x^3-8-27x^3+6=-2\)
c: \(=\left(3x+5+2-3x\right)^2=7^2=49\)
B1 :Tính
a) (6x^4 - 4x^2 + 3x -2) : (3x - 2)
b) (6x^3 +3x^2 +4x+2) : (3x^2+2)
c) (x^5 +4x^3 +3x^2 - 5x +15 ): ( x^3 -x +3
1. x^4+x^2-2=0; 2. x^3+3x^2+6x+4=0; 3. x^3-6x^2+8x=0; 4. x^4-8x^3-9x^2=0 Giúp với (;~;)
1/ \(x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
2/ \(x^3+3x^2+6x+4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))
\(\Leftrightarrow x=-1\).
3/ \(x^3-6x^2+8x=0\)
\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)
4/ \(x^4-8x^3-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
3x^4 + 3x^2y^2 + 6x^3y - 27x^2
x^4 + x^3 - x^2 + x
2x^5 - 6x^4 - 2a^2x^3 - 6ax^3
x^5 + x^4 + x^3 + x^2 + x + 1
x^3 - 1 + 5x^2 - 5 + 3x - 3
1/4.(a + 1)^2 - 4/9.(a - 2)^2
12a^2b^2 - 3.(a^2b^2)^2
4x^2y^2 - (x^2 + y^2 - a^2)^2
(a + b + c)^2 + (a + b - c)^2 - 4c^2
x^3 - 1 + 5x^2 - 5 + 3x - 3