Cho n>2 và n không chia hết cho 3.CMR hai số n2-1 và n2+1 không thể đồng thời là số nguyên tố.
Cho n>2 và không chia hết cho 3. CMR hai số n^2 - 1 và n^2 + 1 không thể đồng thời là số nguyên tố.
Bạn vào câu hỏi tương tự nhé Tên bạn là gì
cho n lớn hơn 2 và n không chia hết cho 3.CMR : n^2 - 1 và n^2 + 1 không thể đồng thời là số nguyên tố
Cho n>2 và n KHông chia hết cho 3
CMR : 2 số n2 - 1 và n2 + 1 không thể đồng thời là 2 số nguyên tố .
Cho n>2 và n KHông chia hết cho 3
CMR : 2 số n2 - 1 và n2 + 1 không thể đồng thời là 2 số nguyên tố .
bài 120:Cho n>2 và không chia hết cho 3. Chứng minh rằng hai số n2-1 và n2+1 không thể đồng thời là số nguyên tố
Vì n không chí hết cho 3 => n2 không chia hết cho 3
Xét 3 stn liên tiếp n2 - 1; n2; n2 + 1
Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 = 1 sẽ chia hết cho 3
=> 1 trong 2 số đó sẽ là hợp số
Vậy n2 - 1 và n2 + 1 không thể đồng thời là snt
Cho n > 2 và không chia hết cho 3. Chứng minh rằng hai số n2 - 1 và n2 + 1 không thể đồng thời là số nguyên tố
Do \(n>3\) và không chia hết cho 3
\(\Rightarrow\)\(n^2>3\) và không chia hết cho 3.
Xét 3 số tự nhiên liên tiếp \(n^2-1;n^2;n^2+1\)có:
\(n^2\)không chia hết cho \(3\)
\(\Rightarrow\) 1 trong 2 số \(n^2-1,n^2+1⋮3\) sẽ chia hết cho 3 (không xảy ra TH 2 số cùng chia hết cho 3)
\(\Rightarrow\) 1 trong 2 số là số nguyên tố (không thể cùng là số nguyên tố vì ko cùng chia hết cho 3)
Vậy \(n^2-1,n^2+1\) không thể đồng thời là số nguyên tố.
CMR: \(n^2-1\) và \(n^2+1\) không thể đồng thời là số nguyên tố và n>2 , n không chia hết cho 3
Cho n>2 và n không chia hết cho 3
Chứng minh n^2-1 và n^2+1 không thể đồng thời là số nguyên tố
cho n>2 và ko chia hết cho 3.CMR hai số n^2 trừ 1 và n^2 + 3 ko thể đồng thời là hai số nguyên tố
Giả sử n chia 3 dư 1 thì n2 chia 3 cũng dư 1 khi đó n2-1 chia hết cho 3 nên không là số nguyên tố
Giả sử n chia 3 dư 2 => n2 chia 3 dư 1 khi đó n2-1 chia hết cho 3 nên không là số nguyên tố
=> đpcm
Nguồn:Nguyễn Anh Duy (h.vn)