Những câu hỏi liên quan
LD
Xem chi tiết
NT
3 tháng 9 2022 lúc 22:50

=>3x-3=x-5

=>2x=-2

=>x=-1(loại)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 4 2017 lúc 12:43

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

hệ phương trình (*) trở thành :

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ u = 9 7 ⇒ 1 x = 9 7 ⇒ x = 7 9 + v = 2 7 ⇒ 1 y − 2 7 ⇒ y − 7 2

Vậy hệ phương trình có nghiệm (7/9;7/2)

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
NQ
7 tháng 8 2021 lúc 10:48

điều kiện: \(x\ge\frac{1}{2}\)

ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)

\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)

\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)

TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)

TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)

( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)

Bình luận (0)
 Khách vãng lai đã xóa
DC
10 tháng 8 2021 lúc 16:27

=1 nha

Bình luận (0)
 Khách vãng lai đã xóa
KK
15 tháng 8 2021 lúc 14:23

bằng 1 nha 

Bình luận (0)
 Khách vãng lai đã xóa
KB
Xem chi tiết
NL
22 tháng 8 2020 lúc 21:12

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

pt trở thành: \(t^2-2-3t+9=0\)

\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)

Vậy pt đã cho vô nghiệm

Bình luận (0)
HM
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
1 tháng 9 2023 lúc 13:54

Để giải phương trình này bằng đặt ẩn phụ, chúng ta sẽ đặt ẩn phụ là một biến mới, ví dụ như u. Sau đó, ta thực hiện phép đặt ẩn phụ bằng cách thay thế x = u - 11. Bằng cách này, ta có thể chuyển phương trình ban đầu thành một phương trình bậc nhất với ẩn phụ u.

Bình luận (0)
TN
Xem chi tiết
AH
1 tháng 11 2019 lúc 0:22

Lời giải:

ĐKXĐ: $x\geq 2$ hoặc $x\leq 1$

Đặt $\sqrt{x^2-3x+2}=a(a\geq 0)\Rightarrow x^2-3x-4=a^2-6$

Phương trình đã cho trở thành:

\(a=a^2-6\)

\(\Leftrightarrow a^2-a-6=0\Leftrightarrow a(a-3)+2(a-3)=0\)

\(\Leftrightarrow (a-3)(a+2)=0\Rightarrow a=3\) (do $a\geq 0$)

\(\Leftrightarrow \sqrt{x^2-3x+2}=3\)

\(\Rightarrow x^2-3x+2=9\)

\(\Leftrightarrow x^2-3x-7=0\Rightarrow x=\frac{3\pm \sqrt{37}}{2}\) (đều thỏa mãn)

Vậy.........

Bình luận (0)
 Khách vãng lai đã xóa