Những câu hỏi liên quan
H24
Xem chi tiết
H24
22 tháng 7 2021 lúc 14:03

Tham khảo nha ^^undefined

Bình luận (0)
DT
Xem chi tiết
NL
28 tháng 7 2017 lúc 10:08

min ( A ) = 28

Nếu mình đúng thì các bạn k mình nhé

Bình luận (0)
DT
28 tháng 7 2017 lúc 10:13

Mình làm được gần hết bạn tới đoạn thay điều kiện rồi nhưng chưa tìm được x 

Bình luận (0)
TL
6 tháng 8 2017 lúc 12:26

(a)=28.

Bình luận (0)
NH
Xem chi tiết
NA
Xem chi tiết
TL
27 tháng 5 2015 lúc 22:56

Đặt a = x - 2 => x - 1 = a + 1; x - 3 = a -1

Khi đó, A = (a+1)4 + (a - 1)4 + 6.(a + 1)2 .(a - 1)2

A = [(a + 1)2  + (a - 1)2]2 + 4.(a + 1)2 .(a - 1)2

 = (a2 + 2a + 1 + a2 - 2a + 1)2 + 4.(a2 - 1)2

= (2a2 +2)2 + 4.(a4 - 2a2 + 1)

= 4a4 + 8a2 + 4 + 4a4 - 8a2 + 4 = 8a4 + 8 \(\ge\) 8 với mọi a

=> min A = 8 khi a = 0 <=> x - 2 = 0 <=>  x= 2

Bình luận (0)
VD
Xem chi tiết
HP
19 tháng 5 2017 lúc 16:34

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

Bình luận (0)
TN
19 tháng 5 2017 lúc 17:54

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

Bình luận (0)
HP
19 tháng 5 2017 lúc 20:30

x,y có dương đâu mà AM-GM rồi schwarz hay vậy Thắng ? 

Bình luận (0)
LK
Xem chi tiết
AH
30 tháng 10 2023 lúc 19:33

Đề có vẻ thiếu điều kiện để tìm min. Bạn xem lại.

Bình luận (0)
TD
Xem chi tiết
H24
2 tháng 6 2021 lúc 10:15

`a)A=|x-1/2|>=0`
Dấu "=" xảy ra khi `x-1/2=0<=>x=1/2`
`b)B=|x+3/4|+2`
`|x+3/4|>=0`
`=>|x+3/4|+2>=2`
Hay `A>=2`
Dấu "=" xảy ra khi `x+3/4=0<=>x=-3/4`.

Bình luận (0)
KA
Xem chi tiết
PT
31 tháng 8 2018 lúc 10:59

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
PT
31 tháng 8 2018 lúc 11:02

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
HL
Xem chi tiết
AH
Xem chi tiết