tìm tất cả các số tự nhiên n để \(3^{2n}+3^n+1⋮13\)
tìm tất cả các số tự nhiên n để:
\(3^{2n}+3^n+1⋮13\)
Xet \(n=3k\)
\(\Rightarrow3^{6k}+3^{3k}+1\equiv3\left(mod13\right)\)
Xet \(n=3k+1\)
\(\Rightarrow3^{6k+2}+3^{3k+1}+1\equiv9+3+1\equiv0\left(mod13\right)\)
Xet \(n=3k+2\)
\(\Rightarrow3^{6k+3+1}+3^{3k+2}+1\equiv3+9+1\equiv0\left(mod13\right)\)
Vậy vơi mọi n tự nhiên và n không chia hêt cho 3 thì
\(3^{2n}+3^n+1⋮13\)
Tìm tất cả các số tự nhiên n để: 32n + 3n + 1 chia hết cho 13
32n+3n=9n+3n⋮12" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
đồng dư 12 mod 1332n+3n=9n+3n⋮12" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:14.04px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
học tốt
32n+3n=9n+3n⋮12" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
đồng dư 12 mod 13⇒32n+3n+1⋮13" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
Sai đâu có gì sửa giùm
tìm tất cả số tự nhiên n để 32n +3n +1 chia hết cho 13
thành 6a3 cũng thấy bài này khó à tớ cũng vừa lên hỏi xong ha ha thế mà tớ cũng tưởng thành làm được đang định gọi điện hỏi thì...
1) Tìm số dư khi chia 20132012 cho 7
2) Tìm tất cả các số tự nhiên n để 3 2n + 3n +1 chia hết cho 13
Câu 1 thì mình biết làm đó.
Vì 2013 chia 7 dư 4 nên 20132012 chia 7 cũng dư 4
tìm tất cả số tự nhiên n để 32n+3n chia hết cho 13
Tìm tất cả các số tự nhiên n để 2n + 108 chia hết cho 2n +3.
2n + 108 chia hết cho 2n + 3
2n + 3 + 105 chia hết cho 2n + 3
105 chia hết cho 2n + 3
2n + 3 thuộc U(105) = {1;3;5;7;15;21;35;105}
Bạn liệt kê ra
bài 5:
1) cho A = 5+32+...+32017+32018. Tìm số tự nhiên n biết 2A-1=3n
2) chứng tỏ rằng với mọi số tự nhiên n thì 3n-3+2n-3+3n+1+2n+2 chia hết cho 6
3) tìm tất cả các cặp số tự nhiên (a,b) để 5a +9999 =20b
18) Cho A =\(\dfrac{7^{2016^{2019}}-3^{2016^{2015}}}{5}\)chứng tỏ A là số chẵn.
mn mn mn giúp giúp mình gấp mình sắp đi học rồiiiii
\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)
Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)
\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)
Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)
Tìm tất cả các số tự nhiên n để n+1, n+3, n+7, n+9, n+13, n+15 đều là số nguyên tố
tìm tất cả các số tự nhiên để n+1,n+3,n+7,n+9,n+13 và n+15 đều là số nguyên tố
ai mà biết được
Câu 3: a) Tìm ƯCLN(150;84)và BCNN(15;35;200).
b) Tìm tất cả các số tự nhiên n để 3n+13 chia hết cho n+1.
a: UCLN(150;84)=6
BCNN(15;35;200)=2100