Những câu hỏi liên quan
HK
Xem chi tiết
LN
Xem chi tiết
LH
20 tháng 6 2015 lúc 15:49

Phân tích ra ta được: 4n2 +4n+1+8n+9

                          =  4n2+4n+8n+10

                          =4n(n+1) +8n + 8  +2

   mà 4n(n+1) chia hết cho 8 (n(n+1) là tích của hai số tự nhiên liên tiếp); 8n và 8 chiaheets cho 8. Vậy còn dư 2

Nên biểu thức không chia hết cho 8 với mọi n

Bình luận (0)
NT
Xem chi tiết
TC
7 tháng 8 2021 lúc 20:33

undefined

Bình luận (0)
NT
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bình luận (0)
DL
Xem chi tiết
NH
10 tháng 7 2018 lúc 9:10

mk làm luôn nhá ^^

tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)

                                                  =\(-5n^2-5n\)

 Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)

        \(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n

\(\Rightarrowđpcm\)

Bình luận (0)
HT
Xem chi tiết
HP
22 tháng 8 2021 lúc 16:52

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

Bình luận (0)
NC
22 tháng 8 2021 lúc 16:57

 n3−n⋮3∀n∈Z

Bình luận (0)
LL
22 tháng 8 2021 lúc 17:07

a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3

b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\) 

Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)

Bình luận (0)
NA
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
NL
26 tháng 12 2022 lúc 20:41

Đặt \(N=n^4-2n^3-n^2+2n=n^2\left(n^2-1\right)-2n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left(n^2-2n\right)=\left(n-1\right)\left(n+1\right)n\left(n-2\right)\)

\(\Rightarrow N\) là tích của 4 số nguyên liên tiếp nên luôn chia hết cho 12

Bình luận (0)
PN
Xem chi tiết