tìm GTNN của các BT sau
a) A=(x-1)(x+2)(x+3)(x+6)
b) B=x^2-2x+y^2+4y+8
c) C=x^2-4x+y^2-8y+6
Tìm GTNN của biểu thức sau: a) A= x^2-2x+y^2+4y+8 b) B= x^2-4x+y^2-8y+6 c) C= x^-4xy+5y^2+10x-22y+28
a: \(A=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=1 và y=-2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)
Dấu '=' xảy ra khi x=2 và y=4
Bài 1 : Tính giá trị nhỏ nhất của các bt sau
a) A=X+10x+26 với x = 45
b) B=x^2-0.2x+0.01 với 1.1
c) C=x^2+9y^2-6xy với x=16 và y=2
d) D= x^3-6x^2y+12xy^2-8y^3 với x=14 và y=2
Lưu ý giải bằng cách làm của hằng đẳng thức
Bài 2: Tìm GTNN và GTLN của các bt sau
A=x^2-3x+5
B=(2x-1)^2 +(x+2)^2
Bài 3 : Tìm GTLN của bt sau
A=4-x^2+2x
B=4x-x^2
Bai 4 Cho x+y=3.tính gt của bt A=x^2+2xy+y^2-4x^2-4y+1
Bai 5 cho a^2+b^2+c^2=m.tính gt bt sau theo m
A=(2a+2b-c^2)+(2b+2c-a)^2+(2c+2a-b)^2
Bài 6 cho (a+b)^2=2(a^2+b^2).c/m rằng a=b
tìm GTNN của biểu thức
D = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
A = \(x^2-2x+y^2+4y+8\)
C = \(x^2-4x+y^2-8y+6\)
B = \(2x^2-4x+10\)
D = (x-1).(x+2).(x+3).(x+6)
= (x2 + 5x - 6).(x2 + 5x + 6)
= (x2 + 5x)2 + 6x.(x2+5x)-6(x2 + 5x) - 36
= (x2 + 5x)2 - 36 \(\ge\) -36 với mọi x
Vậy D có GTNN = - 36 khi x2 + 5x = 0
hay x = 0; x = 5
A = x2 - 2x + y2 + 4y + 8
= (x2 - 2x + 1) + (y2 + 2.2y + 4) + 3
= (x-1)2 + (y+2)2 + 3 \(\ge\) 3 với mọi x,y
Vậy A có GTNN = 3
C = x2 - 4x + y2 - 8y + 6
= (x2 - 4x + 4) + (y2 - 8y + 16) - 12
= (x-2)2 + (y-4)2 - 12 \(\ge\) -12 với mọi x;y
Vậy C có GTNN = -12
B = 2x2 - 4x + 10
= x2 + (x2 - 4x + 4) + 6
= x2 + (x-2)2 + 6 \(\ge\) 6 với mọi x
Vậy B có GTNN = 6
Giúp với đang cần gấp
Tìm GTNN của biểu thức
D=(x-1).(x+2).(x+3).(x+6)
E= x^2-2x+y^2+4y+8
F=x^2-4x+y^2-8y+6
Tìm GTNN, GTLN (nếu có) của các biểu thức sau:
a) A = 5 - x^2 + 2x - 4y^2 - 4y
b) B = x^2 - 2x + y^2 - 4y + 7
c) C = x^2 - 4xy + 5y^2 + 10x - 22y + 28
d) D = (x-1) (x+2) (x+3) (x+6)
tìm GTNN của :
a, A = x^2 - 5x + 6
b, B = x^2 -4x + y ^2 -8y +6
c, N= ( x - 1 ) ( x +2 ) ( x +3 ) ( x + 6 )
Tìm giá trị nhỏ nhất của biểu thức: a) A= x^2- 6x+ 11
b) B= x^2- 20x+ 101
c) C= 4x- x^2+ 1
d) D= (x- 1) (x+ 2) (x+ 3) (x+ 6)
e) E= x^2- 2x+ y^2+ 4y+ 8
f) F= x^2- 4x+ y^2- 8y+ 6
g) G= x^2- 4xy 5y^2+ 10x- 22y+ 28
a) \(A=x^2+6x+11\)
\(A=x^2+6x+9+2\)
\(A=\left(x+3\right)^2+2\)
Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)
Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy: \(Min_A=2\) tại \(x=-3\)
b) \(B=4x-x^2+1\)
\(B=-x^2+4x-4+5\)
\(B=-\left(x-2\right)^2+5\)
\(B=5-\left(x-2\right)^2\)
Có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow5-\left(x-2\right)^2\le5\)
Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Max_B=5\) tại \(x=2\)
d, (x-1) (x+2) (x+3) (x+6)
=(x^2+2x-x-2) (x^2+6x+3x+18)
=(x^2-x^2) + (2x-x+6x-3x) = (-2+18)
=0 + (-8x) =16
= x =16:(-8)
= x =-2
A = x^2 + 6x + 11
= x^2 + 6x + 9 + 2
= (x + 3)^2 + 2
min = 2
Tìm giá trị nhỏ nhất của biểu thức:
a) A= x^2- 6x+ 11
b) B= x^2- 20x+ 101
c) C= 4x- x^2+ 1
d) D= (x- 1) (x+ 2) (x+ 3) (x+ 6)
e) E= x^2- 2x+ y^2+ 4y+ 8
f) F= x^2- 4x+ y^2- 8y+ 6
g) G= x^2- 4xy 5y^2+ 10x- 22y+ 28
tìm giá trị nhỏ nhất của biểu thức
a, A=x^2-6x+11
b, B=x^2-20x+101
c, C= x^2-6x+11
d, D= (x-1)(x+2)(x+3)(x+6)
e,E= x^2-2x+y^2+4y+8
f, x^2-4x+y^2-8y+6
g, G=x^2-4xy+5y^2+10x-22y+28
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
oOo Không đủ can đảm để oOo copy mà nói nhưu mk tự làm