Phép nhân và phép chia các đa thức

NL

tìm GTNN của các BT sau

a) A=(x-1)(x+2)(x+3)(x+6)

b) B=x^2-2x+y^2+4y+8

c) C=x^2-4x+y^2-8y+6

PT
11 tháng 9 2018 lúc 20:06

a) \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x\right)^2-6^2\)

\(A=\left(x^2+5x\right)^2-36\)

\(\left(x^2+5x\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow Amin=-36\Leftrightarrow x^2+5x=0\)

\(\Rightarrow x\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

b) \(B=x^2-2x+y^2+4y+8\)

\(B=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+3\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\left(y+2\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

\(\Rightarrow Bmin=3\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

c) \(C=x^2-4x+y^2-8y+6\)

\(C=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(C=\left(x-2\right)^2+\left(y-4\right)^2-14\)

\(\left(x-2\right)^2\ge0\) với mọi x

\(\left(y-4\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) với mọi x,y

\(\Rightarrow Cmin=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HN
Xem chi tiết
LP
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
KJ
Xem chi tiết