ai giúp mình câu này với. Là toán VNEN: 1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1
1/00-1/100.99-1/99.98-1/98.97-...............-1/3.2-1/2.1
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\dfrac{99}{100}=-\dfrac{49}{50}\)
1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
= 1/100 - (1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1)
= 1/100 - (1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)
= 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)
= 1/100 - (1 - 1/100)
= 1/100 - 99/100
= -49/50
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=-\left(1-\frac{1}{100}\right)\)
\(=-\frac{99}{100}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=-\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=-\frac{99}{100}\)
C = 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - .... - 1/3.2 - 1/2.1
C= \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
= \(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\) ( viet nguoc lai cho de nhin)
= \(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
= \(-\frac{49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - .... - 1/3.2 - 1/2.1
\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}+\frac{1}{98}-\frac{1}{99}+...+1-\frac{1}{2}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)=-\frac{1}{2}\)
Tính:
1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 -1/2.1
Các bạn ơi giúp mình với ạ. Ai nhanh và đúng mình tick
Rút gọn \(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\frac{1}{\left(a+1\right)a}=\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng đẳng thức trên ta tính ĐƯỢC:
A= 1/100-(1/99-1/100+1/98-1/99+...+1/2-1/3+1/1-1/2)
=1/100-(-1/100+1)
=1/50+1=51/50
\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\frac{99}{100}\)
\(A=\frac{-98}{100}=-\frac{49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - ( 1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)
C = 1/100 - ( 1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)
C = 1/100 - ( 1 - 1/2 + 1/2 - 1/3 + .... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - ( 1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50
Tính dùm mình nhé : 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1. mình đag cần gâp lắm. Thanks nhiều
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{100.99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}\)
\(=\frac{-9799}{9900}\)
1/100-1/100.99-1/99.98-1/98.97- .... -1/3.2-1/2.1 =?
cho C = 1/100 -1/(100.99) -1/(99.98)- 1/(98.97)-...........- 1/(3.2)- 1/(2.1)
50 nếu ai thích sakura thì **** mình nếu ai thích sakura mà Ko **** mình thì chứng tỏ bạn Ko thích sakura