Giải phương trình:
\(\sqrt{x+4}+\sqrt{6-x}=2x^2-13x^2+17\)
Giải các phương trình sau:
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)
\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn
Vậy phương trình vô nghiệm
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)
\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn
Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)
\( \Leftrightarrow x = 0\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn
Vậy nghiệm của phương trình là x=3
giải phương trình :
a,\(\sqrt{2x^2+13x+5}+\sqrt{2x^2-3x+5}=8\sqrt{x}\)
b, \(\sqrt{x^2-\dfrac{4}{3}}+2\sqrt{x^2-1}=x\)
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
giải phương trình:
\(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}\left(x+5\right)\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Nhìn không đủ chán rồi không dám động vào
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)
Giải phương trình :
\(a,13x-2\sqrt{x}.\left(3+2y\right)+y^2+1=0\)
\(b,x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
\(c,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(d,2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Giải phương trình
a)\(\sqrt{x+4}+\sqrt{6-x}=\:x^2-10x+27\)
b)\(\sqrt{2x+1}+\sqrt{17-2x}=x+1\)
Giải phương trình
a) \(\sqrt{x+4}+\sqrt{6-x}=x^2-10x+27\)
b)\(\sqrt{2x+1}+\sqrt{17-2x}=x+1\)