a) \(\sqrt{43a^2+3a}\)với a ≥ 0
b) 3x + \(\sqrt{9+6x+x^2}\)với x < -3
Cho biểu thức A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) (với \(x\ge0;x\ne9\))
a) Rút gọn A
b) Tìm x nguyên để A nguyên
a, \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b, \(A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\)
\(\Leftrightarrow\sqrt{x}+3\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\)
\(a,A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(x\ge0;x\ne9\right)\\ A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
\(b,A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\Leftrightarrow-3⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-4;-2;0\right\}\)
Mà \(\sqrt{x}\ge0\)
\(\Leftrightarrow x\in\left\{0\right\}\)
Vậy \(x=0\) thì A nguyên
RÚT GỌN BIỂU THỨC
A=\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(với a>_ 0, b>_ 0, a#b)
B=\(\left(\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right).\left(\frac{\sqrt{x}+\sqrt{y}}{x-y}\right)\)(với x>_ 0, y>_ 0, x#y)
C=\(x-4-\sqrt{16-8x^2+x^4}\)(với x>4)
D=\(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)(với a>0, b>0, a#b)
E=\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right).\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)(với a>0, a#1)
F=\(\frac{a-3\sqrt{a}}{\sqrt{a}-3}-\frac{a+4\sqrt{a}+3}{\sqrt{a}+3}\)( với a>_ 9)
G=\(\frac{9-x}{\sqrt{x}+3}-\frac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\)( với x>_ 9 )
Khử mẫu của biểu thức dưới dấu căn bậc hai
a) \(\sqrt{\dfrac{5x^3}{49y}}\)
với x ≥ 0, y >0
b) 7xy\(\sqrt{\dfrac{-3}{xy}}\)
với x<0, y>0
Bài 20 (trang 15 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau:
a) $\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}$ với $a\ge 0$ ; b) $\sqrt{13a}.\sqrt{\dfrac{52}{a}}$ với $a>0$ ;
c) $\sqrt{5a}.\sqrt{45a}-3a$ với $a\ge 0$ ; d) $(3-a)^2-\sqrt{0,2}.\sqrt{180a^2}$.
a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)
do \(a\ge0\)
b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)
c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)
\(=15a-3a=12a\)do a > 0
d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)
Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)
Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)
a) Ta có:
b) Ta có:
c) Do a ≥ 0 nên bài toán luôn xác định. Ta có:
d) Ta có:
b) \(\sqrt{13a}\).\(\sqrt{\frac{52}{a}}\)=\(\sqrt{13a.\frac{52}{a}}\)=\(\sqrt{13.13.2.2}\)=13.2=26
Bài 13 (trang 11 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau:
a) $2\sqrt{a^2}-5a$ với $a<0$ ; b) $\sqrt{25a^2}+3a$ với $a \le 0$;
c) $\sqrt{9a^4}+3a^2$ ; d) $5\sqrt{4a^6}-3a^3$ với $a<0$.
a, \(2\sqrt{a^2}-5a=2\left|a\right|-5a\)do a < 0
\(=-2a-5a=-7a\)
b, \(\sqrt{25a^2}+3a=\sqrt{\left(5a\right)^2}+3a=\left|5a\right|+3a\)do \(a\le0\)
TH1 : \(-5a+3a=-2a\)với \(a< 0\)
hoặc TH2 : \(5+3=8\)
c, \(\sqrt{9a^4}+3a^2=\sqrt{\left(3a^2\right)^2}+3a^2=\left|3a^2\right|+3a^2\)
\(=3a^2+3a^2=6a^2\)do \(3>0;a^2\ge0\forall a\Rightarrow3a^2\ge0\forall a\)
d, \(5\sqrt{4a^6}-3a^3=5\sqrt{\left(2a^3\right)^2}-3a^3\)
\(=5\left|2a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)do \(a< 0\Rightarrow a^3< 0\)
a) \(2\sqrt{a^2}-5a\)=2\(|a|\)-5a = -2a-5a=-7a
b) \(\sqrt{25a^2}\) +3a = 5\(|a|\) + 3a=5a+3a=8a.
c) \(\sqrt{9a^4}\) + 3\(a^2\)=6\(a^2\)
d) \(5\sqrt{4a^6}\) - 3\(a^3\)=-13\(a^3\)
a, 2|a| - 5a = -2a - 5a = -7a
b, 5|a|+3a = 5a + 3a = 8a
c, |3a^2| + 3a^2 = 3a^2 + 3a^2 = 6a^2
d, 5|2a^3| - 3a^3 = 5. (-2a^3) - 3a^3 = -10a^3- 3a^3=-13a^3
1) CM với mọi giá trị thực của x; ta luôn có :
\(\sqrt{3x+6x+12}+\sqrt{5x^4-10x^2+9}\ge5\)
2) giải pt: \(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
giải chi tiết giúp mk câu 1 nha, cảm ơn nhiều
2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )
Vt >/ 3 + 2 = 5
VP </ 5
dấu = xảy ra khi x =-1
Minh Triều bạn làm giúp mk đi, mk ko làm đc
a : \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a ≥ 0
b : \(\sqrt{3a}.\sqrt{\dfrac{52}{a}}\)với a ≥ 0
c : \(2y^2.\sqrt{\dfrac{x^4}{4y^2}}\)với y ≤ 0
a) \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}\)
\(=\sqrt{\dfrac{2a\cdot3a}{3\cdot8}}\)
\(=\sqrt{\dfrac{6a^2}{24}}\)
\(=\sqrt{\dfrac{a^2}{4}}\)
\(=\dfrac{\sqrt{a^2}}{\sqrt{4}}\)
\(=\dfrac{a}{2}\)
b) \(\sqrt{3a}\cdot\sqrt{\dfrac{52}{a}}\)
\(=\sqrt{3a\cdot\dfrac{52}{a}}\)
\(=\sqrt{3\cdot52}\)
\(=\sqrt{13\cdot3\cdot4}\)
\(=2\sqrt{39}\)
c) \(2y^2\cdot\sqrt{\dfrac{x^4}{4y^2}}\)
\(=2y^2\cdot\dfrac{\sqrt{\left(x^2\right)^2}}{\sqrt{\left(2y\right)^2}}\)
\(=2y^2\cdot\dfrac{x^2}{-2y}\)
\(=\dfrac{2y^2\cdot x^2}{-2y}\)
\(=-x^2y\)
a)\(\sqrt{9\left(2-3x\right)^2}=6\)
b)\(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
c)\(\sqrt{10\left(x-3\right)}=\sqrt{20}\)
d)\(\sqrt{x^2+6x+9}=3x-6\)
a
\(\sqrt{9\left(2-3x\right)^2}=6\\ \Leftrightarrow3\left|2-3x\right|=6\\ \Leftrightarrow\left|2-3x\right|=2\)
Với \(x\le\dfrac{2}{3}\) thì PT trở thành:
\(2-3x=2\\ \Leftrightarrow3x=0\\ \Leftrightarrow x=0\left(nhận\right)\)
Với \(x>\dfrac{2}{3}\) thì PT trở thành:
\(3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\left(nhận\right)\)
b
ĐK: \(x\ge-\dfrac{3}{2}\)
\(\sqrt{4x^2-9}=2\sqrt{2x+3}\\ \Leftrightarrow\sqrt{\left(2x\right)^2-3^2}=2\sqrt{2x+3}\\ \Leftrightarrow\sqrt{2x-3}.\sqrt{2x+3}-2\sqrt{2x+3}=0\\ \Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=0\\\sqrt{2x-3}-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\2x-3=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(nhận\right)\\x=\dfrac{7}{2}\left(nhận\right)\end{matrix}\right.\)
c
ĐK: \(x\ge3\)
\(\sqrt{10\left(x-3\right)}=\sqrt{20}\\ \Leftrightarrow10\left(x-3\right)=20\\ \Leftrightarrow x-3=2\\ \Leftrightarrow x=5\left(nhận\right)\)
d
\(\sqrt{x^2+6x+9}=3x-6\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-6\\ \Leftrightarrow\left|x+3\right|=3x-6\)
Với \(x\ge-3\) thì PT trở thành:
\(x+3=3x-6\\ \Leftrightarrow x+3-3x+6=0\\ \Leftrightarrow-2x+9=0\\ \Leftrightarrow x=\dfrac{9}{2}\left(nhận\right)\)
Với \(x< -3\) thì PT trở thành:
\(-x-3=3x-6\\ \Leftrightarrow-x-3-3x+6=0\\ \Leftrightarrow-2x+3=0\\ \Leftrightarrow x=\dfrac{3}{2}\left(loại\right)\)
Giải phương trình:
1, \(3x^2+6x-3=\sqrt{\dfrac{x+7}{3}}\) (2 cách khác nhau )
2, \(\left(\sqrt{3x+1}-\sqrt{x-2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)
3, \(\sqrt{-3x-1}+\sqrt{9x^2+9x+3}=-9x^2-6x\)
4, \(\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{5x^2-1}\)
5, \(\left(\sqrt{x+4}+2\right)\left(x+2\sqrt{x-5}+1\right)=6x\)
6, \(\sqrt{5-x^4}-\sqrt[3]{3x^2-2}=1\)
7, \(3x^2+11+\sqrt{x-2}+\sqrt{2x+3}=14x\)
8, \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-7}}}}=7\)
9, \(\sqrt{2x^2-1}+3x\sqrt{x^2-1}=3x^3+2x^2-9x-7\) ( với \(x>0\) )