Cho x^ 2+5y^2 -4xy-6y+9=0 . Tính giá trị của A= 𝑥+𝑦 / x-y
Bài 4: a) Cho x - y = 7. Tính giá trị của biểu thức 𝐴 = 𝑥(𝑥 + 2) + 𝑦(𝑦 − 2) − 2𝑥𝑦 + 37.
b) Cho x + y = 3 và x2 + y2 = 5. Tính xy
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
Thay \(x-y=7\)vào biểu thức ta được:
\(A=7^2+2.7+37=49+14+37=100\)
b) Ta có: \(x+y=3\)\(\Rightarrow\left(x+y\right)^2=9\)\(\Rightarrow x^2+y^2+2xy=9\)
mà \(x^2+y^2=5\)\(\Rightarrow5+2xy=9\)
\(\Rightarrow2xy=4\)\(\Rightarrow xy=2\)
Vậy \(xy=2\)
a) A = x( x + 2 ) + y( y - 2 ) - 2xy + 37
= x2 + 2x + y2 - 2y - 2xy + 37
= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 37
= ( x - y )2 + 2( x - y ) + 37
Thế x - y = 7 vào A ta được :
A = 72 + 2.7 + 37 = 49 + 14 + 37 = 100
Vậy A = 100 khi x - y = 7
b) x + y = 3 => ( x + y )2 = 9
=> x2 + 2xy + y2 = 9
=> 5 + 2xy = 9 ( sử dụng gt x2 + y2 = 5 )
=> 2xy = 4
=> xy = 2
a)
A = x( x + 2 ) +y( y - 2 ) - 2xy + 37
=\(x^2+2x+y^2-2y-2xy+37\)
=\(x^2-2xy+y^2+2x-2y+37\)
=\(\left(x-y\right)^2+2\left(x-y\right)+37\)
=\(7^2+2\cdot7+37\)
=\(49+14-37\)
= 26
b)
\(x^2+y^2=5\)
\(\left(x+y\right)^2-2xy=5\)
\(3^2-2xy=5\)
\(9-2xy=5\)
\(2xy=9-5\)
\(2xy=4\)
\(xy=2\)
Cho 𝑥 + 𝑦 = 3. Tính giá trị của biểu thức: 𝐴 = 𝑥^2 + 2𝑥𝑦 + 𝑦^2 − 5𝑥 − 5𝑦 + 1 Cho 𝑥 − 𝑦 = 6. Tính giá trị của biểu thức: 𝐵 = 𝑥^2 + 6𝑥 + 𝑦^2 − 6𝑦 − 2𝑥𝑦 + 9 Cho 𝑥 − 2𝑦 = 1. Tính giá trị biểu thức 𝐶 = 𝑥^2 + 4𝑦^2 − 3𝑥 − 4𝑥𝑦 + 6𝑦 − 2
a) Ta có: M=x2−2xy+y2−10x+10yM=x2−2xy+y2−10x+10y
=(x−y)2−10(x−y)=(x−y)2−10(x−y)
=92−10⋅9=−9 mình bt thế thôi mog bn thông cảm.
a) Ta có: M=x2−2xy+y2−10x+10yM=x2−2xy+y2−10x+10y
=(x−y)2−10(x−y)=(x−y)2−10(x−y)
=92−10⋅9=−9
máy mình nó bị lỗi nên bn thông cảm nhé trả lời vừa đây mới là đugs
Cho các số x y thỏa mãn x^2 + 5y^2 + 2x - 6y - 4xy + 2 = 0. Tính giá trị biểu thức S = x^2020 + (y-2)^2021
Cho 𝑥, 𝑦, 𝑧,𝑡 ≠ 0 và 𝑥 + 𝑦 + 𝑧 + 𝑡 ≠ 0 thỏa mãn 𝑥 /𝑦 = 𝑦/ 𝑧 = 𝑧 /𝑡 = 𝑡/ 𝑥 Tính giá trị của biểu thức: M = 2𝑥−𝑦/ 𝑧+𝑡 + 2𝑦−𝑧/ 𝑡+𝑥 + 2𝑧−𝑡/ 𝑥+𝑦 + 2𝑡−𝑥 /𝑦+z
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}=\dfrac{x+y+z+t}{y+z+t+x}=1\\ \Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=t\\t=x\end{matrix}\right.\Rightarrow x=y=z=t\\ \Rightarrow M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
Câu 2:Cho 2 hàm số y = x + 2 (d1) và y = -x + 4 (d2)
Xác định hàm số bậc nhất y = ax + b (a #0) biết rằng đồ thị của nó song song
với đường thẳng (d1) và cắt đường thẳng (d2) tại điểm có hoành độ bằng 3.
A. 𝑦 = 𝑥 − 2.
B. 𝑦 = 𝑥 + 1.
C.𝑦 = 𝑥 + 2.
D. 𝑦 = 𝑥 − 3.
Câu 34: Cho dãy tỉ số bằng nhau 𝑥+1/2=𝑦+5/3=𝑧+12/4 𝑣à 𝑥+𝑦+𝑧=36 thì giá trị của x ,y, z tìm được là
A. x = 11, y = 13, z = 12 B. x = 12, y = 13, z = 11
C. x = 13, y = 11, z = 12 D. x = 12, y = 11, z = 13
Bài 2: Tìm số nguyên x, y, z biết:
a) 3/𝑥 = 𝑦/−6 với x < y < 0
b) 𝑥 + 1/3 = 1/𝑦 −2
c) 𝑥 − 3/4 = 2𝑥 − 1/3
d) −2/3 = 𝑥/9 = 20/3𝑦 = −𝑦/45
dấu / là phần
a: =>xy=-18
=>x,y khác dấu
mà x<y<0
nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài
b: =>(x+1)(y-2)=3
\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)
c: \(\Leftrightarrow8x-4=3x-9\)
=>5x=-5
hay x=-1
Cho 2x2 + 5y2 + 4xy - 6y + 3 = 0.
Tính giá trị biểu thức: M = 2014(x + y)3 + 2015(x + 2)4 .
GIÚP MÌNH VỚI! MÌNH ĐANG CẦN GẤP!
Tìm giá trị nguyên x,y thỏa mãn hệ thức sau
x2 - 4xy + 5y2 = 100
4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0
1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)
hoặc \(\int^{x-2y=10}_{y=0}\) hoặc \(\int^{x-2y=6}_{y=8}\) hoặc \(\int^{x-2y=8}_{y=6}\)
từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)
2. 4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên
vậy phương trình đã cho không có nghiệm nguyên