Chứng tỏ rằng: Với mọi n thuộc N; n-1
a. n(2n+1)(7n+1):2 và 3.
Chứng tỏ rằng (n-1)n(n+1)chia hết cho 3 với mọi n thuộc Z
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
Chứng tỏ rằng (n-1)n(n+1)chia hết cho 3 với mọi n thuộc Z
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1) chia hết cho 3!
=>n(n-1)(n+1) chia hết cho 3
với mọi n thuộc N, chứng tỏ rằng: ƯCLN(2n+5, 3n+7)=1
Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)
Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)
=> 6n+15-6n-14\(\vdots d\)
\(=> 1\vdots d \)
=> d \(\in Ư(1)=(1)\)
Vậy d=1
Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .
Chứng tỏ rằng (2015^n + 2) *(2015^n +1) chia hết cho 3 với mọi n thuộc n
Em ghi rõ đề ra xíu anh chưa hiểu lắm em ơi!
Em ghi rõ đề ra xíu anh chưa hiểu lắm em ơi!
Câu 7: Chứng tỏ rằng: n(n+1).(n+5) chia hết cho 3 với mọi n thuộc N
ta có n có 3 dạng là :3k,3k+1,3k+2
Với n=3k ta có 3k(3k+1)(3k+5) chia hết cho 3
Với n=3k+1 ta có (3k+1)(3k+2)(3k+6)=3.(3k+1)(3k+2)(k+2) chia hết cho 3
Với n =3k+2 ta có (3k+2)(3k+3)(3k+7)=3.(3k+2)(k+1)(3k+7) chia hết cho 3
=> n(n+1)(n+5) chia hết cho 3 (dpcm)
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3 với mọi n thuộc N
k mk nha
Chứng tỏ rằng mọi phân số có dạng n/n+1(với n thuộc N,n khác 0)
please help me = làm ơn giúp tôi
TÔI CẦN GIÚP ĐỠ NGAY BÂY GIỜ
Gọi d là UCLN(n;n+1)
Suy ra: n chia hết cho d; n+1 chia hết cho d (1)
=> (n+1)-n chia hết cho d => 1 chia hết cho d (2)
Từ (1) và (2) => d=+1
vậy mọi phân số có dạng n/n+1(với n thuộc N,n khác 0)
chứng tỏ rằng (n - 1) . (n + 2) ko chia hết cho 9 với mọi n thuộc Z
chứng tỏ rằng với mọi n thuộc N* ta luôn có 1/n(n+1)=1/n-1/n+1
Ta có:
\(VP=\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}\)
\(=\frac{n-n+1}{n\left(n+1\right)}=\frac{0+1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}=VT\)
Vậy \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)
Chứng tỏ rằng :
a, (n+3) . (n+6) chia hết cho 2 với mọi n thuộc N
b, n . (n+5) chia hết cho 2 với mọi n thuộc N
a) nếu n là số lẻ
n+3 sẽ bằng 1 số lẻ => (n+3).(n+6) chia hết cho 2
nếu n là số chẵn
n+6 sẽ bằng 1 số chẵn=>(n+3).(n+6) chia hết cho 2
a) ( n + 3 ) . ( n + 6 )
+) Xét n chẵn => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
+) Xét n lẻ => n + 3 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
+) Xét n bằng 0 => n + 6 là số chẵn => ( n + 3 ) . ( n + 6 ) chia hết cho 2
Vậy với mọi n thì ( n + 3 ) . ( n + 6 ) luôn chia hết cho 2
b) n . ( n + 5 )
+) Xét n chẵn => n chia hết cho 2 => n ( n + 5 ) chia hết cho 2
+) Xét n lẻ => n + 5 là số chẵn => n ( n + 5 ) chia hết cho 2
+) Xét n bằng 0 => n ( n + 5 ) = 0 => n ( n + 5 ) chia hết cho 2
Vậy với mọi n thì n ( n + 5 ) luôn chia hết cho 2