Tìm x, y, z biết:
ax = by = cz và \(xyz=\frac{8}{abc}\left(a,b,c\ne0\right)\)
Tìm x, y, z biết: ax = by= cz và xyz = \(\frac{8}{abc}\left(a,b,c\ne0\right)\)
Tìm x, y, z biết:
ax = by = cz
và xyz = \(\frac{8}{abc}\left(a,b,c\ne0\right)\)
Tìm ;y;Z: ax = by = cZ và
\(xyZ=\frac{8}{abc}\left(a;b;c\ne0\right)\)
Từ giả thuyết của đề \(\Rightarrow\frac{x}{\frac{1}{a}}=\frac{y}{\frac{1}{b}}=\frac{z}{\frac{1}{c}}=k\)
\(\Rightarrow x=\frac{k}{a};y=\frac{k}{b};z=\frac{k}{c}\)
Mà xyz = \(\frac{8}{abc}=\Rightarrow\frac{k^3}{abc}=\frac{8}{abc}=k^3=8\Rightarrow k=2\)
Vậy \(x=\frac{2}{a};y=\frac{2}{b};z=\frac{2}{c}\)
CHÚC BẠN HỌC TỐT!
Cuộc thi toán :^^:
Ko ns nhiều:
1 \(Cho:ax^3=by^3=cz^3.Và:\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1.CM:\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{ax^2+by^2+cz^2}\)
2. \(CMR:nếu:\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}.x\ne y;zyx\ne0;yz\ne1;zx\ne1.\Rightarrow xy+yz+zx=xyz\left(x+y+z\right)\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\)
Tính \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax^2+by^2+cz^2\right)}\)
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\). Rút gọn biểu thức \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne̸0\) thì \(x=ak;y=bk;z=ck.\)
Do đó : \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)^2}{k^2\left(a^2+b^2+c^2\right)^2}=1.\)
cho a, b, c, x, y, z thỏa mãn \(ã+by+cz\ne0\) ; \(a+b+c=\frac{1}{2020}\). Tính giá trị biểu thức \(T=\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Bạn chắc đề đúng chứ?
Theo Maple, nếu không có điều kiện gì thêm giữa x, y, z thì không có giá trị chính xác cho biểu thức T.
Tìm x, y, z biết ax = by = cz và xyz = \(\frac{8}{abc}\)( a, b, c khác 0)
ta co ax=by=cz
suy ra x/(1/a)=y/(1/b)=z/(1/c)=k
suy ra x=k/a ; y=k/b ; z=k/c
ma xyz=8/abc suy ra k/a*k/b*k/c=k^3=8
suy ra k=2
suy ra x=2/a;y=2/b;z=2/c
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\)
Rút gọn \(\frac{\left(x^2+y^2+z^2\right).\left(a^2+b^2+c^2\right)}{\left(\text{ax}+by+cz\right)^2}\)
Đặt biểu thức trên là A
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne0\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Nên \(A=\frac{\text{[}\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2\text{]}.\left(a^2+b^2+c^2\right)}{\left(a.ak+b.bk+c.bk\right)^2}\)
\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right).\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)
\(=\frac{k^2\left(a^2+b^2+c^2\right).\left(a^2+b^2+c^2\right)}{\text{[}k\left(a^2+b^2+c^2\right)\text{]}^2}\)
\(=\frac{k^2.\left(a^2+b^2+c^2\right)^2}{k^2.\left(a^2+b^2+c^2\right)}\)
\(=1\)
Vậy A=1
à quên sửa dòng trên chỗ A=1 cái chỗ mẫu là \(k^2.\left(a^2+b^2+c^2\right)^2\)nhen :v