CMR
a5- a ⋮ 30 ∀ a ∈ Z
Chứng minh: a5-a chia hết 30 với a ϵ Z
A=a^5-a=a(a^4-1)
=a(a-1)(a+1)(a^2+1)
Vì a;a-1;a+1 là 3 số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>A chia hết cho 6
Vì 5 là số nguyên tố
nên a^5-a chia hết cho 5
=>A chia hết cho 30
cho a,b,c ∈ Z và a+b+c ⋮ 2 CMR: a5+b5+c5⋮3
Giúp mình với
cm a5 -a chia hết cho 30 với a thuộc Z
\(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(\)\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Chứng minh : \(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)chia hết cho 5 và 6
\(a\left(a-1\right)\left(a+1\right)\)chia hết cho 6
Mà (5,6) = 1
\(\Rightarrow a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)chia hết cho 30
\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)chia hết cho 30
\(\Rightarrow a^5-a\) chia hết cho 30 (ĐPCM)
Cho a5+b5-29c5=149d5+269e5 (a,b,c,d,e ∈ Z) Chứng minh: (a+b+c+d+e) ⋮ 30
Helppppppppppppp meeeeeeeeeeeeeeeeeeeeeeee.
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5).CMR A luôn chia hết cho 288
Bạn xem hướng dẫn ở đây:
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :
A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5)
CMR A luôn chia hết cho 288
Bạn xem hướng dẫn ở đây:
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
CMR
\(a^5-a⋮30\forall a\in Z\)
Ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a^2-1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a^2-1\right)\)
Đến đây bạn lập luận đi !
CMR
\(a^5-a⋮30\forall a\in Z\)
a5 - a
= a(a4 - 1)
= a(a2 - 1)(a2 + 1)
= a(a - 1)(a + 1)[(a2 - 4) + 5]
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
Ta có:
a(a - 1)(a + 1)(a - 2)(a + 2) chia hết cho 30
5a(a - 1)(a + 1) chia hết cho 30
=> a5 - a chia hết cho 30
Cho a thuộc Z. CMR:
\(P=a^5-a⋮30\)
\(P=a^5-a\)
\(=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=5\left(a-1\right)a\left(a+1\right)+\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)\)
\(=5\left(a-1\right)a\left(a+1\right)+\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)
Nhân thấy \(5\left(a-1\right)a\left(a+1\right)⋮5\); \(\left(a-1\right)a\left(a+1\right)⋮3!=6\)
=> \(5\left(a-1\right)a\left(a+1\right)⋮30\)
\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5!\)
=> \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮30\)
Vậy P chia hết cho 30
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)
Tự cm tiếp
CMR: a5 - a chia hết cho 30 với mọi a thuộc Z
a5 - n = a(a4 - 1 )= a(a - 1)(a + 1)(a2 +1)
Xét a(a-1)là 2 số tự nhiên liên tiếp nên chia hết cho 2
(n+1)n(n-1) là 3 số tự nhiên liên tiếp nên chia hết cho 3
Mà (2;3) = 1 => chia hết cho 6
Lại xét :
a = 5k => tích trên chia hết cho 5
a = 5k+1 => a - 1 = 5k chia hết cho 5
a = 5k+2 => a2 + 1 = (5k + 2)2 + 1 = 25k2 + 5 chia hết cho 5
a = 5k+3 => a2 + 1 = (5k + 3)2 + 1 = 25k2 + 10 chia hết cho 5
a = 5k+4 => a + 1 = 5k + 5 chia hết cho 5
Mà (6; 5) = 1.
Vậy a5 - a chia hết cho 30 với mọi a \(\in\) Z