cm rang :a/a^2(a+1)+2a(a+1) chia hết cho 6 vs a là số nguyên
b/-x^2+4x-5<0 vs mọi x
Chứng minh:1.a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
1) a2(a+1)+2a(a+1)
=(a+1)(a2+2a)
=(a+1)(a2+2a+1-1)
=(a+1)[(a+1)2-12]
=(a+1)(a+1-1)(a+1+1)
=a(a+1)(a+2)
Trong 3 số nguyên liên tiếp luôn có một số chia hết cho 2, một số chia hết cho 3.
=> a(a+1)(a+2)\(⋮\)2.3=6
=> a2(a+1)+2a(a+1)\(⋮\)6 (a thuộc Z)
BÀI 1.
CHỨNG MINH:
a) a^2(a+1)+2a(a+1) chia hết cho 6 vs a thuộc Z
b) a(2a-3)-2a(a+1) chia hết cho 5 vs a thuộc Z
BÀI 2.
a) 36x^2-49=0
b(x-1)(x+1)=x+2
c) x^2(x+1)+2x(x+1)=0
d) x(2x-3)-2(3-2x)=0
e) 2x^3(2x-3)-x^2(4x^2-6x+z)=0
f)(x-2)^2-(x+3)^2=5+4(x+1)
a) \(36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)
\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)
Bài 2
a) 36x2-49=0
⇔ (6x)2-49=0
⇔(6x-7).(6x+7)=0
TH1: 6x-7=0 TH2: 6x+7=0
⇔6x=7 ⇔6x=-7
⇔x=7/6 ⇔x=-7/6
C/m rằng
a) a^2(a+1)+2a(a+1) chia hết cho 6 vs a là số dư
b) a(2a-3)-2a(a+1) chia hết cho 5 vs a là số nguyên
a, a\(^2\)(a+1)+2a(a+1)
=(a+1)(a\(^2\)+2a)
=a(a+1)(a+2)
vì a ;a+1 ;a+2
là 3 số nguyên liên tiếp
=>a(a+1)(a+2)\(⋮\)2 và 3mà 2 và 3 là 2 số nguyên tố cùng nhau=>a(a+1)(a+2)\(⋮\)6
b, a(2a-3)-2a(a+1)
=2a\(^2\)-3a-2a\(^2\)-2a
=-5a
vì -5\(⋮\)5
=>-5a\(⋮\)5
Chứng minh :
1) a2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên.
2) a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên.
3) x2+2x+2 > 0 với mọi x
4) x2-x+1 > 0 với mọi x
5) n3-3n2-n+3 chia hết cho 48 với mọi số nguyên lẻ n
1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)
2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)
3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x
4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x
a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5
b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6
a, n. ( 2n - 3 ) - 2n . ( n +1 ) chia hết cho 5
bài 7: chứng minh rằng
a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c. x^2+2x+2>0 với mọi x
d. x^2-x+1>0 với mọi x
e. -x^2+4x-5<0 với mọi x
Tớ làm cho bạn mà bạn toàn ko tick
a)a2(a+1)+2a(a+1)=(a2+2a)(a+1)=a(a+2)(a+1)
Ta có Ta có a(a+1)(a+2) là 3 số tự nhiên liên tiếp =>a(a+1)(a+2)⋮3 (1)
Mà a(a+1)\(⋮\)2 (2)
Từ (1)(2) suy ra a(a+1)(a+2)⋮6
=>a2(a+1)+2a(a+1)⋮6
b)a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a
Vì -5 chia hết 5
=>-5a chia hết 5
c)x2+2x+2=x2+2x+1+1=(x+1)2+1
Vì (x+1)2≥0
<=>(x+1)2+1>0
d)x2-x+1=\(x^2-\frac{2.1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đpcm)
e)-x2+4x-5=-(x2-4x+5)=-(x2-4x+4)-1=-(x-2)2-1
Vì -(x-2)2≤0=>-(x-2)2-1<0(đpcm)
rồi nhé
bài 7 : chứng minh rằng
a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c. x^2+2x+2>0 với mọi x
d. x^2-x+1>0 với mọi x
e. -x^2+4x-5<0 với mọi x
a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)
\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)
Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)
Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)
mà 2 và 3 là hai số nguyên tố cùng nhau(3)
nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)
hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)
b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=2a^2-3a-2a^2-2a\)
\(=-5a⋮5\forall a\in Z\)
hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)
c) Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)
hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)
d) Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)
hay \(x^2-x+1>0\forall x\in Z\)(đpcm)
e) Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)
hay \(-x^2+4x-5< 0\forall x\in Z\)
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n
a) a2 ( a + 1 ) + 2a ( a + 1) chia hết cho 6 với a ∈ Z.
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với a ∈Z.
c) x2 + 2x + 2 > 0 với mọi x
d) x2-x+1>0với mọi x
e) -x2 + 4x-5<0 với mọi x
1.Cho A=1+2-3-4+5+6-...-99-100
a)A có chia hết cho 2,3,5 không? Vì sao?
b)A có bao nhiêu ước nguyên?
2.Cho a,b là các số nguyên. CMR 2a+3b chia hết 7 thì 8a+5b chia hết 7