Cho các số dương a,b,c,d thỏa mãn \(a\ge b,c\ge d\). CM:
\(ac+bd\ge bc+ad\)
Cho các số thực dương a,b,c,d thỏa mãn: \(a\ge c+d;b\ge c+d\)
\(CMR:ab\ge ad+bc\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\ge c+d\\b\ge c+d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-c\ge d\ge0\\b-d\ge c\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-c\right)\left(b-d\right)\ge cd\)
\(\Leftrightarrow ab-bc-ad+cd\ge cd\)
\(\Leftrightarrow\) \(ab\ge ad+bc\left(đpcm\right)\)
Cho các số nguyên dương n,a,b,c,d thỏa mãn n2\(\le\)a<b\(\le\)c<d<(n+1)2. Chứng minh rằng |ad-bc|\(\ge\)1.
cho a,b,c,d\(\ge0\) thỏa \(a\ge c+d\), \(b\ge c+d\)
cm:\(ab\ge ad+bc\)
ta có:a>=c+d suy ra a-c>=d (1)
b>=c+d suy ra b-d>=c (2)
nhân (1) và (2) theo vế ta được:
(a-c)*(b-d)>=c*d
suy ra ab-ad-bc+cd>=cd
suy ra ab>=cd+ad+bc-cd
suy ra ab>=ad+bc
Cho a;b;c thỏa mãn \(a\ge b\ge c\) và ab+bc+ac=5
\(CMR:\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ac\right)\ge-4\)
Cho các số nguyên dương a, b, c, d, p.q thỏa mãn \(\frac{a}{b}>\frac{p}{q}>\frac{c}{d}\) và ad - bc = 1. Chứng minh q \(\ge\)b + d
cho các số nguyên dương a,b,c,d,p,q thỏa mãn \(\frac{a}{b}>\frac{p}{q}>\frac{c}{d}\)và\(ad-bc=1\)
chứng minh rằng \(q\ge b+d\)
Cho các số thực a , b , c , d thỏa mãn :
\(a\ge b\ge c\ge d;a+b+c+d=9;a^2+b^2+c^2+d^2=21\)
Chứng minh rằng \(ab-cd\ge2\)
Cho 3 số dương a,b,c thỏa mãn abc=1 cm
(a+b)(b+c)(c+a) \(\ge\) 5(a+b+c)-7
Cho a,b,c dương thỏa mãn ab + bc +ca \(\ge\)3
Cm \(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c4}{a+3c}\ge\frac{3}{4}\)