Tìm n thuộc dãy số tự nhiên biết:
a) n -1 chia hết cho 11
b) ( n+1) chia hết cho n-1
Tìm số tự nhiên n biết:
a,(3n+5) chia hết cho (2n-1)
b,80 chia hết cho n, 48 chia hết cho n, n<8
c, n chia hết cho 12, 50,60 . 0<n<6000
a: =>6n+10 chia hết cho 2n-1
=>6n-3+13 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;13;-13}
mà n>=0
nên n thuộc {1;0;7}
b: 80 chia hết cho n
48 chia hết cho n
=>n thuộc ƯC(80;48)
=>n thuộc Ư(16)
mà n<8
nên n thuộc {1;2;4}
c: n chia hết cho 12;50;60
=>n thuộc BC(12;50;60)
=>n thuộc B(300)
mà 0<n<6000
nên \(n\in\left\{300;600;...;5700\right\}\)
Tìm số tự nhiên n biết:
a) 2n+7 chia hết cho n+2
b) 4n-5 chia hết cho 2n -1
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
Câu 1.Tìm n thuộc tập hợp số tự nhiên:
a) n+4 chia hết cho n
b) 3n + 7 chia hết cho n
c) 27- 5n chia hết cho n
Câu 2.Tìm n thuộc tập hợp số tự nhiên sao cho:
a)n+6 chia hết cho n+2
b)2n+3 chia hết cho n-2
c) 3n +1 chia hết cho 11 - 2n.
Tìm n thuộc số tự nhiên sao cho:
n+2 chia hết cho n-12n+1 chia hết cho 6-nn+2=(n-1)+3
ta có vì (n-1) chia hết cho (n-1)
Suy ra 3 chia hết cho (n-1)
Vậy (n-1) thuộc ước của 3
Ư(3)={1;-1;3;-3}
th1 n-1=1 suy ra n=2(tm)
th2 n-1=-1 suy ra n=0(tm)
th3 n-1=3 suy ra n=4(tm)
th4 n-1=-3 suy ra n=-2(ko tm)
Vậy n={2;0;4}
Câu sau cũng gần giống thế
Bài 18:
a)Tìm số tự nhiên n có 3 chữ số biết n chia cho 20;25;30 đều dư 15 chia hết cho 41
b)Tìm số tự nhiên nhỏ nhất có chữ số tận cùng là 7;n chia 13 dư 8;n chia 19 có dư
Bài 19:Tìm n thuộc N , biết:
a)6 - 5n chia hết cho n
b)( n+4) chia hết cho (n+1)
c)3n - 5 chia hết cho n +1
d)3n +1 chia hết cho 11 - n
Mí pạn giúp mik xin hậu tạ
tìm n thuộc số tự nhiên
n + 5 chia hết cho n + 1
n+9 chia hết cho n-1
2n + 5chia het cho n + 2
* n+5 chia hết cho n+1
=> n+1+4 chia hết cho n+1
mà n+1 chia hết cho n+1
=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4) = {1;2;4}
=> n thuộc {0; 1; 3}
* n+9 chia hết cho n-1
=> n-1+10 chia hết cho n-1
=> 10 chia hết cho n-1
=> n-1 thuộc Ư(10)={1;2;5;10}
=> n thuộc {2; 3; 6; 11}
* 2n+5 chia hết cho n+2
=> 2n+4+1 chia hết cho n+2
=> 2.(n+2)+1 chia hết cho n+2
=> 1 chia hết cho n+2
=> n+2 thuộc Ư(1)={1}
Mà n là số tự nhiên
=> không có n thỏa mãn.
Giúp mình với! Mai phải nộp rồi!
B1: TÌm số tự nhiên n sao cho n chia hết cho 21 và n+1 chia hết cho 165
B2: Tìm x,y thuộc Z sao cho:
A, 5x + 4y = 3
B, 3x + 7y = 55
B3: TÌm số tự nhiên n nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5,6 đều dư 1
B4: Tìm tất cả các số tự nhiên n để 5n+2 chia hết cho 17
Ta có: n+1 chia hết cho 165
=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}
=> n = { -1 ; 164 ; 329 ; 494;659;............}
Vì n chia hết cho 21
=> n =
bây sai cả 5n+ 1 chia hết cho 7 thì kết quả là số tự nhiên
đùa đó 5n+ 1 chia hết cho 7
=> 5n+ 1- 14 chia hết cho 7
=> 5n- 15
ta có: 5n+ 1- 14= 5n- 15= 5.(n-1)
=> 5.(n-1) chia hết cho n- 1
=> n= 7k+ 1 (k E N)
1. Tìm số tự nhiên nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5 và 6 luôn có số dư là 1.
2. Tìm tất cả các số tự nhiên n sao cho
a) n chia hết cho 9 và n+1 chia hết cho 25
b) n chia hết cho 21 và n+1 chia hết cho 165
c) n chia hết cho 9, n +1 chia hết cho 25 và n+2 chia hết cho 4
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1. n = 301
2.a) n = 99
b) không có
c) n = 774
tìm n thuộc số tự nhiên:
a) 3n + 7 chia hết cho n
b) n + 2 chia hết cho n + 1
a) Vì 3n chia hết cho n
=> 7 chia hết cho n
=>n \(\varepsilon\)Ư(7) = {1;7;-1;-7}
b) Ta có: n+2= n+1+1
mà n+1 chia hết cho n+1
=> 1 chia hết cho n+1
=> n+1 \(\varepsilon\)Ư(1) = {1;-1}
Lập bảng:
n+1 | 1 | -1 |
n | 0 | -2 |
a) Vì 3n chia hết cho n
=> 7 chia hết cho n
=>n \(\in\)Ư(7) = {1;7;-1;-7}
b) Ta có: n+2= n+1+1
mà n+1 chia hết cho n+1
=> 1 chia hết cho n+1
=> n+1 \(\in\)Ư(1) = {1;-1}
*n+1=1 => n=0
*n+1=-1 => n=-2