x\a=y\b=z\c
chứg minh (x^2+y^2+ z^2 ) / (ax+by+cz) =1/(a^2+b^2+c^2)
chứng minh nếu (a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2 với x,y,z khác 0 thì a/x=b/y=c/z
Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath
cho a,b,c,x,y,zkhac \
x/a=y/b=z/c chung minh rang (x^2+y^2+z^2)/(ax+by+cz)^2=1/(a^2+b^2+c^2)
Cho x,y,z #0 và (ax + by + cz) / x^2+y^2+z^2 = a^2+b^2+c^2
Chứng minh rằng a/x = b/y =c/z
Cho x,y,z #0 và (ax + by + cz) / x^2+y^2+z^2 = a^2+b^2+c^2
Chứng minh rằng a/x = b/y =c/z
cho a+b+c = x+y+z = a/x + b/y + c/z = 0 chung minh ax^2 +by^2+cz^2 = 0
Do x + y + z = 0 nên
x = - (y + z) ; y = - (x + z) ; z = - (x + y)
=> x2 = (y + z)2 ; y2 = (x + z)2 ; z2 = (x + y)2
=> ax2 + by2 + cz2 = a(y2 + 2yz + z2) + b(x2 + 2xz + z2) + c(x2 + 2xy + y2) = x2(b + c) + y2(a + c) + z2(a + b) + 2(ayz + bxz + cxy) (1)
Thay a = - (b + c) ; b = - (a + c) ; c = - (a + b) (Do a + b + c = 0 ) và ayz+bxz+cxy=0 (do a/x+b/y+c/z=0) vào (1) ta được ax2 + by2 + cz2 = - (ax2 + by2 + cz2)
=> ax2 + by2 + cz2 = 0
Cho ax + by + cz = 0. CMR:
ax^2 + by^2 + cz^2/ bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2 = 1/a+b+c
Chứng minh rằng nếu ( a^2 + b^2 + c^2 ).( x^2 + y^2 + z^2 ) = ( ax + by + cz ) ^2 với x,y,z khác 0
thì a / x = b / y = c / z
nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0
CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)
cho x/a=y/b=z/c.Chứng minh : (x^2+y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2
giúp mình với mọi người ơi
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at, y=bt, z=ct$
Khi đó:
$(x^2+y^2+z^2)(a^2+b^2+c^2)=(a^2t^2+b^2t^2+c^2t^2)(a^2+b^2+c^2)$
$=t^2(a^2+b^2+c^2)(a^2+b^2+c^2)$
$=t^2(a^2+b^2+c^2)^2=[t(a^2+b^2+c^2)]^2$
$=(at.a+bt.b+ct.c)^2=(xa+yb+zc)^2$
Ta có đpcm.
Cho ax+by+cz=0 và a+b+c =1/2018 Chứng minh rằng \(\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\) =2018
Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)
Từ ax+by+cz=0
=>(ax+by+cz)2=0
=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0
=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)
Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)
\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)
\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)
\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)
\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)
\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)
\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)