cho a,b,c,x,y,zkhac \
x/a=y/b=z/c chung minh rang (x^2+y^2+z^2)/(ax+by+cz)^2=1/(a^2+b^2+c^2)
cho x/a+y/b+z/c cmr (x^2+ y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2
1,CMR nếu a,b,c x,y,z thỏa mãn điều kiện :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
2,CMR nếu \(\frac{a+bx}{b+cy}=\frac{b+cx}{c+ay}=\frac{c+ax}{a+by}\)
thì \(a^3+b^3+c^3-3abc=0\)
3,CMR nếu \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
thì x=y=z hoặc x2y2z2=1
Cho các số dương a,b,c,x,y,z thỏa mãn x=by+cz;y=ax+cz;z=ax+by
Chứng minh rằng: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
CMR nếu a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( Giả thiết các tỉ số đều có nghĩa )
CMR nếu a,b,c,x,y,z thỏa mãn :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
cho x/a=y/b=z/c. CM x^2+y^2+z^2/(ax+by+cz)^2=1/a^2+b^2+c^2
Ai đúng cho like! (có cách làm)
Cho a,b,c,x,y,z E Z+ sao cho:
x=by+cz(1)
y=ax+cz(2)
z=ax+by(3)
Chứng minh rằng: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
P/s:không làm theo cách của Trần Đức Thắng
Cho x,y,z,a,b,c khác 0 và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). Chứng minh rằng :
a) \(\frac{a^2}{x}=\frac{b^2}{y}=\frac{c^2}{x}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
b) \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
Mình cần gấp !