1+2+2^2+2^3+2^4+...+2^14 chia hết cho 31
CMR:
a) 14^14 -1 chia hết cho 3
b) 2009^2009-1 chia hết cho 2008
c) A= 2+ 2^2+...+2^60 chia hết cho 21 và 15
d) B= 5 + 5^2+...+5^12 chia hết cho 30 và 31
e) C= 1+3+3^2+...+3^11 chia hết cho 52
chứng minh rằng A=2+2^2+2^3+2^4+2^5....+2^14+2^15 chia hết cho 31
a=2^16-1 chia hết cho 2^5-1 =31
Có A=2+22+23+...+215
=> A = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 211 + 212 + 213 + 214+215 )
=> A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 211 . ( 1 + 2 + 22 + 23 + 24 )
=> S = 2 . 31 + ... + 211. 31
=> S = 31 . ( 2 + .. + 211 ) \(⋮\) 31
Vậy S chia hết cho 31 ( đpcm )
Bài 1:
A=2^1+2^2+2^3+2^4+...
B=3^1+3^2+3^+3^4+...
C=5^1+5^2+5^3+5^4+...
Bài 2:
+ 2^2019 chia hết cho 3 và cho 7
+ 3^2010 chia hết cho 4 và cho 13
+ 5^2010 chia hết cho 6 và cho 31
Bài 1:
$A=2^1+2^2+2^3+2^4$
$2A=2^2+2^3+2^4+2^5$
$\Rightarrow 2A-A=2^5-2^1$
$\Rightarrow A=2^5-1=32-1=31$
----------------------------
$B=3^1+3^2+3^3+3^4$
$3B=3^2+3^3+3^4+3^5$
$\Rightarrow 3B-B = 3^5-3$
$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$
--------------------------
$C=5^1+5^2+5^3+5^4$
$5C=5^2+5^3+5^4+5^5$
$\Rightarrow 5C-C=5^5-5$
$\Rightarrow C=\frac{5^5-5}{4}$
Bài 2: Sai đề bạn nhé. Bạn xem lại.
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
CMR:
P = 1 + 2 + 22 + 23 + ... + 213 + 214 chia hết cho 31.
Ta có :
\(P=1+2+2^2+.........................+2^{14}\)
\(\Rightarrow P=\left(1+2+2^2+2^3+2^4\right)+........+\left(2^9+...+2^{14}\right)\)
\(\Rightarrow P=2\left(1+2+....+2^4\right)+.....+2^{10}\left(1+2+...+2^4\right)\)
\(\Rightarrow P=2.31+......+2^{10}.31\)
\(\Rightarrow P=31\left(2+...+2^{10}\right)⋮31\)
\(\rightarrowđpcm\)
Ta có:
P=1+2+22+23+...+213+214
=(1+2+22+23+24)+(25+26+27+28+29)+(210+211+212+213+214)
=31+25(1+2+22+23+24)+210(1+2+22+23+24)=31+25.31+210.31\(⋮\)31
Hình như bài này phải giải là:
P = 1 + 2 + 22 + 23 + ... + 213 + 214
=> P = ( 1 + 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 + 29 ) + ( 210 + 211 + 212 + 213 + 214 )
= 31 + 25. ( 1 + 2 + 22 + 23 + 24 ) + 210. ( 1 + 2 + 22 + 23 + 24 )
= 31 + 25 . 31 + 210 . 31
= 31 . ( 1 + 25 + 210 ) chia hết cho 3.
Chứng tỏ :
a, 1 + 4 + 4^2 + 4^3 + ......+ 4^2012 chia hết cho 21
b , 1 + 7 + 7^2 + .......+7^101 chia hết cho 8
c, 2 + 2^2 + 2^3 + ....+2^100 chia hết cho 31
d, 2 + 2^2 + 2^3 + ....+2^100 chia hết cho 5
Chứng tỏ :
a, 1 + 4 + 4^2 + 4^3 + ......+ 4^2012 chia hết cho 21
b , 1 + 7 + 7^2 + .......+7^101 chia hết cho 8
c, 2 + 2^2 + 2^3 + ....+2^100 chia hết cho 31
d, 2 + 2^2 + 2^3 + ....+2^100 chia hết cho 5
a)đặt tên biểu thức là C . Ta có :
C = 1 + 4 + 42 + 43 + ... + 42012
C = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 42010 + 42011 + 42012 )
C = 21 + 43 . ( 1 + 4 + 42 ) + ... + 42010 . ( 1 + 4 + 42 )
C = 21 + 43 . 21 + ... + 42010 . 21
C = 21 . ( 1 + 43 + ... + 42010 )
=> C chia hết cho 21
b) đặt tên biểu thức là B . Ta có :
B = 1 + 7 + 72 + ... + 7101
B = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )
B = 8 + 72 . ( 1 + 7 ) + ... + 7100. ( 1 + 7 )
B = 8 + 72 . 8 + ... + 7100 . 8
B = 8 . ( 1 + 72 + ... + 7100 )
=> B chia hết cho 8
tương tự
1. CMR: A là lũy thừa của 2 với: A= 4+22+23+24+...+220
2. So sánh: 3111 và 1814
3. TÌm n để 18.n+3 chia hết cho 7
1 A= 2^2+2^2+2^3+...+2^20
A= 2*2^2+2^3+...+2^20
A=2^3+2^3+...+2^20
tương tự vậy A=2^21 ( cố hiểu làm hơi tắt)