\(1+2+2^2+2^3+2^4+....+2^{14}\)
\(=\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)+\left(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}\right)\)
\(=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)
\(=\left(1+2+2^3+2^4\right)\left(1+2^5+2^{10}\right)\)
\(=31\left(1+2^5+2^{10}\right)\)\(⋮\)\(31\)
Đặt A = 1 + 2 + 22 + 23 + ... + 214
=> 2A = 2 + 22 + 23 + 24 + ... + 215
=> 2A - A = 215 + 214 + ... + 23 + 22 + 2 - 1 - 2 - 22 - ... - 214
=> A = 215 - 1
=> A = ( 25 )3 - 1
=> A = 323 - 13
Áp dụng hằng đẳng thức a3 - b3 = ( a - b ) ( a2 + ab + b2 )
=> A = ( 32 - 1 ) ( 322 + 32 + 1 )
=> A = 31 . ( 322 + 33 ) chia hết cho 31
\(1+2^2+2^3+2^4+..+2^{14}=\left(1+2+2^2+2^3+2^4\right)\left(1+2^5+2^{10}\right)\)
\(=31\left(1+2^5+2^{10}\right)⋮31\)