So sánh
Căn căn 3 và căn căn2
So sánh :
1. 1- căn3 và căn2 - căn 6
2. căn của (4 + căn7 ) - căn của ( 4- căn7 ) - căn2 và 0
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)
=0
So sánh 12-2 căn 3/6 và căn2
1) So sánh các căn sau
a) 2 căn3 - 5 và căn3 -4
b) 5 căn 5 - 2 căn3 và 6+4 căn5
c) 1 - căn3 và căn2 - căn6
d) căn3 - 3 căn2 và -4 căn3 + 5 căn2
e) 3 - 2 căn3 và 2 căn6 -5
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có:
\(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\)
Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)
c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)
Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)
Thực hiện các phép tính sau a)căn(căn5-căn2)^2+căn(căn5+căn2)^2 b)căn(căn2+1)^2-căn(căn2-5)^2
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)
\(=\sqrt{5}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)
\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)
\(=\sqrt{2}-1-5+\sqrt{2}\)
\(=2\sqrt{2}-6\)
CMR: căn 7 -căn 6>căn 3-căn2
\(\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}< \frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}\)
Vậy đề bài sai:)
so sánh 5 căn 2 +căn 75 và 5 căn 3+căn 50
\(5\sqrt{2}+\sqrt{75}=5\sqrt{2}+5\sqrt{3}\)
\(5\sqrt{3}+\sqrt{50}=5\sqrt{3}+5\sqrt{2}\)
\(\Rightarrow5\sqrt{2}+\sqrt{75}=5\sqrt{3}+\sqrt{50}\)
So sánh
1. căn 11 + căn 5 và 4
2. 3 căn 3 và căn 19 - căn 2
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
so sánh căn 3 + 5 và căn 2 + căn 11
Lời giải:
$\sqrt{3}+5> \sqrt{1}+5=6$
$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$
$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$
So sánh 1) 8 và căn 8 + căn 14 2) M= 2 + căn 3 N= 3 + căn 2
1: \(8^2=64=22+32=22+2\cdot16=22+2\cdot\sqrt{256}\)
\(\left(\sqrt{8}+\sqrt{14}\right)^2=22+2\cdot\sqrt{112}\)
mà \(16>\sqrt{112}\)
nên 8^2>(căn 8+căn 14)^2
=>8>căn 8+căn 14
2: \(\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
\(\left(3+\sqrt{2}\right)^2=11+6\sqrt{2}\)
mà 7<11 và 4căn 3<6căn 2(48<72)
nên (2+căn 3)^2<(3+căn 2)^2
=>2+căn 3<3+căn 2