1x2+2x3+3x4+.......+19x20
giúp mik mik đang cần gấp thank các you
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tính nhanh 1/1x2+1/2x3+1/3x4+ ...+1/2021x2022
giúp mik, mik đang cần gấp
1/(1×2) + 1/(2×3) + 1/(3×4) + ... + 1/(2021×2022)
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2021 - 1/2022
= 1 - 1/2022
= 2021/2022
tính nhanh 1/1x2+1/2x3+1/3x4+ ...+1/2021x2022
nhanh giúp, mik đang cần gấp
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{2021\times2022}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\)
A = 1 - \(\dfrac{1}{2022}\)
A = \(\dfrac{2021}{2022}\)
Tính bằng cách nhanh nhất :
\(\frac{2}{1x2}\)+ \(\frac{2}{2x3}\)+ \(\frac{2}{3x4}\)+ ............... + \(\frac{2}{18x19}\)+ \(\frac{2}{19x20}\)
Giúp mik với nhé mik đang cần rất gấp .
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)=\frac{2.19}{20}=\frac{19}{10}\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+......+\frac{2}{19\times20}\)
\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+.......+\frac{1}{19\times20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)=2.\frac{19}{20}=\frac{19}{10}\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+....+\frac{2}{19\times20}\)
\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{19\times20}\right)\)
\(=2\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\times\left(1-\frac{1}{20}\right)
=2\times\frac{19}{20}
=\frac{19}{10}\)
chúc bạn học tôt nha ^^
Tính Tổng : 1x2+2x3+3x4+...+89x90=
GIÚP MIK VỚI Ạ !
\(A=1\times2+2\times3+3\times4+...+89\times90\)
\(3\times A=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+89\times90\times\left(91-88\right)\)
\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+89\times90\times91-88\times89\times90\)
\(=89\times90\times91\)
\(\Leftrightarrow A=\dfrac{89\times90\times91}{3}=242970\)
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
ai lam dc mik tick cho
Bài 1:Tính
M=1x2+2x3+3x4+.......+19x20
Ghi rõ lời giải ra cho mình nhé!
Thank you everyone!
M=1.2+2.3+3.4+...+19.20
3.M=1.2.3+2.3.3+3.4.3+...+19.20.3
3.M=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+19.20.(21-18)
3.M=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(19.20.21-18.19.20)
Những cái bị gạch là giản ước.
3.M=19.20.21-0.1.2
3.M=7980-0
3.M=7980
M=7980:3
M=2660
Vậy M=2660
Dấu . là dấu nhân
Tính S = 1/(1x2) + 1/(2x3) + 1/(3x4) + ….. + 1/(n x (n+1))
Dùng chuwognf trình pascal nha
mình đang cần gấp vào chiều nay, help me
program tinhtoan;
uses crt;
var: i;n:interger;
S:real;
writeln(' Nhap n='); readln(n);
S:=0;
For i:=1 to n*(n*1) do S:=S+\(\frac{1}{i};\)
writeln(' S=',S);
End.
(ps: ko chắc )
1/1x2+1/2x3+1/3x4 +1/4x5+1/5x6+1/5x7
giải ra cho mik nha Cảm ơn
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{5x7}\)
Đề sai hay bạn sai v ạ, tính nhanh thì lẽ ra phải là 6x7
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{5.6}+\dfrac{1}{5.7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{187}{210}\)
ko nhaa cô giáo mik viết thế mà ko sai đou
1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + ....... + 1/19x20. giup mik ik ah. thank
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/19-1/20
=1/2-1/20
=10/20-1/20
=9/20
\(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{19\times20}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}\)
\(=\dfrac{9}{20}\)
\(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{19\times20}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}\)
\(=\dfrac{10}{20}-\dfrac{1}{20}\)
\(=\dfrac{9}{20}\)