4.Cho tam giác ABC vuông tại A.Đặt góc ABC=x(0o<x<90o).Chứng minh rằng:sin x<tan x
1. Cho tam giác ABC vuông tại A có.Tính độ dài các cạnh AC,BC nếu biết:
1.AB=12cm,tan B=3/4 2.AB=15cm,cos B=5/13
3.AB=2canw3cm,cot=căn 3 4.AB=1cm,sinB=canw3/2
2.Cho tam giác ABC vuông tại A có đường cao AH.Hãy tính sinB,cosB,tanB,cotB rồi suy ra sinC,cosC,tan C,cot C nếu biết:
.AB=30cm,AH=24cm 2.BH=2cm,AH=2 căn 3cm 3.AH=6cm,CH=2 căn 3cm 4.BH=9cm,CH=16cm
3.Cho x là góc nhọn.Tính cos x,tan x,cot x nếu biết sin x=3/5
4.Cho tam giác ABC vuông tại A.Đặt góc ABC=x(0o<x<90o).Chứng minh rằng:sin x<tan x
_ai học phần này rồi giúp mk vs ạ
Mình cần gấp ạ....
1)Cho tam giác ABC cân tại A có AB=6 cm,BC=4 cm.Tính các góc trong tam giác ABC.
2)Cho tam giác ABC vuông tại A có góc B=50 độ,BC=5 cm.Ở phía ngoài tam giác ABC,vẽ tam giác vuông ADC có góc CAD=35 độ.Tính chu vi tam giác ABC và chu vi tam giác ADC
4)cho tam giác ABC vuông tại A, có B= 60* và AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a)chứng minh: tam giác ABC= tam giác EBD
b)chứng minh:tam giác ABE là tam giác đều
c)tính độ dài cạnh BC
5)Tìm x biết: x-1/2011 + x-2/2010 - x-3/2009= x-4/2008
Bài 4:
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Xét ΔABE có BA=BE
nên ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
c: Xét ΔABC vuông tại A có
\(\cos B=\dfrac{AB}{BC}\)
=>5/BC=1/2
hay BC=10(cm)
\(\Rightarrow\dfrac{x-1}{2011}-1+\dfrac{x-2}{2010}-1+\dfrac{x-3}{2009}-1=\dfrac{x-4}{2008}-1-2\)
\(\Rightarrow\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}+\dfrac{x-2012}{2009}=\dfrac{x-2012}{2008}-\dfrac{x-2012}{\left(x-2012\right)\div2}\)
\(\Rightarrow\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}-\dfrac{1}{2008}-\dfrac{1}{\left(x-2012\right)\div2}=0\)
Vì vế bên trên \(\ge0\)
\(x-2012=0\)
\(x=2012\)
Bài 4: Cho tam giác ABC vuông cân tại A, BC=2cm. Ở phía ngoài tam giác ABC vẽ tam giác ACE vuông cân tại E.
a) Chứng minh rằng EC vuông góc với BC
b) Tính số đo các góc của tứ giác ABCE.
Bài 5: Cho tam giác ABC vuông ở A, AH là đường cao, M là một điểm trên BC sao cho CM=CA. Đường thẳng đi qua M song song với CA cắt AB tại I.
a) Chứng minh AM là phân giác của góc BAH
b) Chứng minh rằng luôn luôn có AB+AC< AH+BC
Mình đang cần gấp bài này. Các bạn giúp mình nhé cảm ơn các bạn nhiều.
Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.
b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.
Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.
b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.
1. Cho tam giác ABC cân tại A có góc A = 20 độ. Vẽ D trên nửa mặt phẳng bờ AC không chứa B sao cho tam giác BCD cân tại C và góc BCD = 140 độ. Tính góc ADC
2. Cho tam giác ABC cân tại A có góc BAC = 108 độ. D là điểm nằm trong tam giác ABC sao cho góc DBC = 12 độ, góc DCB = 18 độ. tính góc ADB
3. Cho tam giác ABC cân tại A, A = 100 độ. M nằm trong tam giác ABC sao cho góc MBC = 30 độ, góc MCB = 20 độ. Tính góc MAC
4. Cho tam giác ABC vuông tại A, vẽ AH vuông góc vs BC tại. Biết BH - HC = AC. tính các góc ABC, ACB
bài 4: cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E . Kẻ EH vuông góc BC tại H (H thuộc BC) Chứng minh a) tam giác ABE= tam giác HBE b) BE là đường trung trực của đoạn thẳng AH c) EC>AE
cho tam giác ABC vuông tại A , kẻ AH vuông góc vs BC.Kẻ HK vuông góc vs AC
a, CMtam giác ABC đồng dạng vs tam giác HBA
b,CM AH^2 = HB x HC
a) Xét ΔHBAΔHBAvà ΔHACΔHAC có:
ˆAHB=ˆCHA=900AHB^=CHA^=900
ˆHBA=ˆHACHBA^=HAC^ cùng phụ với góc BAH
suy ra: ΔHBA ΔHACΔHBA ΔHAC
P/S: câu b áp dụng hệ thức lượng. ra số hơi xấu nhé
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
1)Cho tam giác ABC vuông tại A.Biết góc B=60 độ;BC=4.Tính AB,AC,chiều cao AH
2)Cho tam giác ABC vuông tại A.Biết AB=2;góc C=45 độ.Tính AC,BC,chiều cao AH
3)Cho tam giác ABC vuông tại A,Biết AB=3;AC=4.Tính sin C,tan B
Giải giúp mình ạ
Cho tam giác ABC vuông tại A, góc B=2. góc C. Kẻ AH vuông góc vs BC tại H. Trên tia HC lấy điểm D sao cho HD=HB. Từ C kẻ CE vuông góc vs HD. Kẻ CE vuông góc vs AD tại E.
a. Tam giác ABC là tam giác gì? Vì sao?
b. CM: AD=CD; DE=DH; HE//AC
c. Ssánh 4. HE^2 và BC^2-AD^2
a: ΔABC vuông tại A
b: góc B=2/3*90=60 độ
góc C=90-60=30 độ
Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
góc B=60 độ
=>ΔABD đều
=>góc DAB=60 độ
=>góc DAC=góc DCA
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>DH=DE