Những câu hỏi liên quan
QR
Xem chi tiết
PL
24 tháng 5 2018 lúc 21:35

( 2x + 1)( 3 - 2x)( 1 - x) > 0

Lập bảng xét dấu , ta có :

x 1-x 2x+1 3-2x Tích số -1/2 1 3/2 0 0 0 0 0 0 + + - - - + + + + + + - - + - +

Vậy , nghiệm của BPT : \(\dfrac{-1}{2}< x< 1\) hoặc : x > \(\dfrac{3}{2}\)

Bình luận (0)
LT
Xem chi tiết
DH
9 tháng 9 2017 lúc 14:13

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)

\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)

Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)

Bình luận (0)
DH
9 tháng 9 2017 lúc 14:28

Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

Bình luận (0)
TA
Xem chi tiết
PT
4 tháng 4 2017 lúc 19:06

x=3;-0,5;-2

Bình luận (0)
KN
Xem chi tiết
KB
30 tháng 1 2019 lúc 16:53

\(x^4+3x^2+x^3+2x+2=0\)

\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)

Do 2 thừa số ở VT đều > 0

\(\Rightarrow\) PTVN

Bình luận (0)
NT
30 tháng 1 2019 lúc 18:33

\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

Bình luận (0)
QK
Xem chi tiết
LN
16 tháng 4 2020 lúc 9:35

Hình như đề của bạn sai nên mình sửa lại nhé

x4 + 2x3 +5x2 +4x-12=0

⇔x4-x3+3x3-3x2+8x2-8x+12x-12=0

⇔x3(x-1)+3x2(x-1)+8x(x-1)+12(x-1)=0

⇔(x-1)(x3+3x2+8x+12)=0

⇔(x-1)(x+2)(x2+x+6)=0

ta có x2+x+6 >0 ∀x

\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy...

Bình luận (0)
NN
27 tháng 3 2020 lúc 10:05

Đề sai không bạn

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
TC
Xem chi tiết
NL
25 tháng 8 2020 lúc 16:02

a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)

Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)

=> pt vô nghiệm

b) \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 8 2020 lúc 16:27

a,\(\left(x+1\right)^4+\left(x-3\right)^4=0\)

\(x^4-1+x^4-81=0\)

\(2x^4-82=0\)

\(2x^4=82\)

\(x^4=41\)

\(x=\sqrt[4]{41}\)

\(\Rightarrow\)vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
PC
Xem chi tiết
H24
16 tháng 7 2019 lúc 10:38

\(2x^2+3xy+y^2=0\)

\(\Rightarrow2x^2+2xy+xy+y^2=0\)

\(\Rightarrow2x\left(x+y\right)+y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(2x+y\right)=0\)

Bình luận (0)
NP
16 tháng 7 2019 lúc 10:40

     \(2x^2+3xy+y^2=0\)

\(\Leftrightarrow x^2+x^2+2xy+xy+y^2=0\)

\(\Leftrightarrow\left(x^2+xy\right)+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow x\left(x+y\right)+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\)

Hoặc \(x+y=0\Leftrightarrow x=-y\left(1\right)\)

Hoặc \(2x+y=0\left(2\right)\)

Thế (1) vào (2) ta có: 

\(-2y+y=0\)

\(\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Leftrightarrow x=0\left(\text{vì x = -y}\right)\)

Vậy \(x=y=0\)

Bình luận (0)
H24
16 tháng 7 2019 lúc 10:47

Ta có : \(2x^2+3xy+y^2=2x^2+2xy+xy+y^2=2x\left(x+y\right)+y\left(x+y\right)=\left(2x+y\right)\left(x+y\right)=0\)

\(=>\orbr{\begin{cases}2x+y=0\\x+y=0\end{cases}=>\orbr{\begin{cases}x=-\frac{y}{2}\\x=-y\end{cases}}}\)

Vậy x=-y hoặc x=-y/2 với mọi x thì 2x^2+3xy+y^2

Bình luận (0)
CV
Xem chi tiết
AN
23 tháng 5 2017 lúc 16:01

\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)

Điều kiện: \(x\ge\frac{1}{3}\)

Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)

\(\Rightarrow x=a^2+\frac{1}{3}\)

Ta suy ra phương trình tương đương với

\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)

\(\Leftrightarrow54a^4+30a^2+27a-13=0\)

\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)

Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)

\(\Rightarrow3a-1=0\)

\(\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)

\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Bình luận (0)