Tìm các số a,b,c biết \(\frac{a}{b}=\frac{4}{5},\frac{b}{c}=\frac{5}{6}\)và a+2b+c = 100
tìm các số hữu tỉ a,b,c biết : \(\frac{a+5}{a-5}=\frac{b+6}{a-6}+\frac{b+4}{b-4}=\frac{c+3}{c-3}\) và 3a-2b+c =3
Các bạn ơi ,giúp mình với .Mình đang cần gấp.RRRRRRRRất gấp!
Bài 1: Tìm a,b,c,d biết a:b:c:d=2:3:4:5 và a+b+c+d= -42
Bài 2: Tìm a,b,c,d biết
a)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b-3c
b)\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c= -49
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
Bài 1:
Ta có: a:b:c:d = 2:3:4:5
=> a/2 = b/3 = c/4 = d/5 = a+b+c+d/2+3+4+5 = -42/14 = -3
a/2 = -3 => a = -3 . 2 = -6
b/3 = -3 => b = -3 . 3 = -9
c/4 = -3 => c = -3 . 4 = -12
d/5 = -3 => d = -3 . 5 = -15
Vậy a = -6; b = -9; c = -12; d = -15.
Tìm a, b, c biết
1) \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a-2b+3c=35
2) \(\frac{a}{5}=\frac{b}{6};\frac{b}{8}=\frac{c}{7}\) và a+b-c=69
Tìm các số a, b, c biết rằng :
1. \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}\) và a - 2b + 4c = 13
2. 4a = 3b ; 7b = 5c va a - b + c = - 46
3. \(\frac{a}{2}=\frac{2b}{5}=\frac{4c}{7}\)và 3a + 5b + 7c = 123
4. \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\) và abc = -108
5. \(\frac{a}{4}=\frac{b}{6},\frac{b}{5}=\frac{c}{8}\)và 5a - 3b - 3c = -536
6. \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)và 3a - 5b + 7c = 86
7. 5a = 8b = 3c và a - 2b + c = 34
8. 2a = 3b = 5c và a + b -c = 95
9. 3a = 7b và a2 - b2 = 160
10. \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a2 + 3b2 - 2c2 = -16
các bạn tl từng câu một cũng đc, giúp mình nhé
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
mấy bài sau làm tương tự nhu câu 1
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Bài 1: Tìm các số a,b,c biết rằng
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) \(và\)\(a+2b-3c=-20\)
Bài 2: Tìm các số a,b,c biết rằng
\(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}và\)\(a-b+c=-49\)
1. Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}}\)
2. Ta có:\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=-7\\\frac{b}{15}=-7\\\frac{c}{12}=-7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=-70\\b=-105\\c=-84\end{cases}}\)
1. Ta có:a2 =b3 =c4 =a+2b−3c2+6−12 =−20−4 =5
a2 =5 |
b3 =5 |
c4 =5 |
a=10 |
b=15 |
c=20 |
2. Ta có:a2 =b3 ⇒a10 =b15
b5 =c4 ⇒b15 =c12
⇒a10 =b15 =c12 =a−b+c10−15+12 =−497 =−7
a10 =−7 |
b15 =−7 |
c12 =−7 |
a=−70 |
b=−105 |
c=−84 |
Tìm các số a , b , c nếu :
a ) 5a - 3b -3c = - 536 và \(\frac{a}{4}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b ) 3a - 5b + 7c = 86 và \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)
c ) a - 2b + c = 46 và \(\frac{a}{7}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
d ) 5a = 8b = 3c và a - 2b + c = 34
e ) 3a = 7b và a2 - b2 = 160
g ) a2 + 3b2 - 2c2 = - 16 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i ) a3 + b3 + c3 = 792 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
Bài d tương tự bài e
c) Từ \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
=> \(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
=> \(\begin{cases}a=70\\b=60\\c=96\end{cases}\)
Tìm a , b ,c biết là : a) \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a - 2b + 3c = 35 ; b) \(\frac{a}{5}=\frac{b}{6};\frac{b}{8}=\frac{c}{7}\)và a + b - c = 69
c) \(\frac{a}{b}=\frac{b}{10}=\frac{10}{a}\)và a + b \(\ne\)-10
Tìm a,b,c biết:\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a+2b-c=-12
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{a+2b-c}{3+8-5}=\frac{12}{6}=2\)
\(\Rightarrow\hept{\begin{cases}a=2.3=6\\b=2.4=8\\c=2.5=10\end{cases}}\)
Vậy................