cho tam giác AKC cân tại A , đường cao AB , kẻ BD⊥AC . E là trung điểm BC
C/M : AE⊥KD
giúp mình với
cho tam giác AKC cân tại A , đường cao AB , kẻ BD⊥AC . E là trung điểm BC
C/M : AE⊥KD
giúp mình với
Giúp mình 2 bài này với :
1. Cho tam giác ABC (AB<AC). D,E là các điểm lần lượt thuộc AB,AC sao cho BD=CE. DE cắt BC tại K. Chứng minh : AB/AC = KE/KD.
2. Cho tam giác ABC vuông cân tại A, BD là trung tuyến. Qua A kẻ đường thẳng vuông góc với BD cắt BC tại E. Chứng minh EB=2EC
Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.
a,CM:BD=DE
b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED
c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân
d,CM: DN và CK cắt nhau tại trung điểm mỗi đường
Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK
a,CM:Tam giác ABK cân và Tam giác ACK cân
b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE
c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng
d,Tìm điều kiện của Tam giác ABC để AB song song QK
Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)
a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC
b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA
c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN
d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm
Các bạn giúp mình với . 6h là mình phải nộp rồi
Bạn nào nhanh thì mình tích cho
Giúp mình nhanh nha
XÉT TAM GIÁC ABD VÀ TAM GIÁC AED
BA=EA ( GT)
\(\widehat{BAD}=\widehat{EAD}\)( GT)
AD-CẠNH CHUNG
=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)
=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2 góc tương ứng )
b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)
cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)
mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)
=> \(\widehat{KBD}=\widehat{CED}\)
XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :
\(\widehat{KBD}=\widehat{CED}\)(CMT)
BD=ED ( CMT)
\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )
=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)
=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)
c)
vì \(BC//KN\)(GT)
=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )
MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA KD VÀ NC
=> KD//NC
=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)
XÉT TAM GIÁC KDN VÀ TAM GIÁC CND
\(\widehat{KDN}=\widehat{CND}\)( CMT)
DN-CẠNH CHUNG
\(\widehat{CDN}=\widehat{DNK}\)(CMT)
=> TAM GIÁC KDN = TAM GIÁC CND
=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)
LẠI CÓ DC= DK ( CMT )
=> KN=DK
XÉT TAM GIÁC KDN:KN=DK
=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)
ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!
cho tam giác ABC cân tại A đường cao AM, N là trung điểm của AC kẻ Ax//BC cắt MN tại E. Chứng minh:
a) M là trung điểm của BC
b) MF//AB
c)AE=MC
TL
Đáp án:
Giải thích các bước giải:a. ta có: N là trung điểm của AC
a. M là trung điểm của BC
=> MN là đường TB của ∆CAB
=> MN // AB => ME//AB
c. AE // BM
AB//EM
=> AEMB là hình bình hành
=> AE=BM=> AE=MC
HT
Lai hộ cái
a) cân tại mà là đường cao
là trung tuyến (tính chất các đường đồng quy Δ cân)
là trung điểm
mà là trung điểm
là đường trung bình
hay
b)
(so le trong)
Xét và :
Bài 1: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH. E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH =12cm; BC = 18cm
Bài 2: Cho tam giác ABC (AC > AB), đường cao AH. Gọi D,E,K theo thứ tự là trung điểm của AB, AC,BC. CMR:
a, DE là đường trung trực của AH
b, DEKH là hình thang cân
Bài 3: Cho tam giác ABC cân tại A, đường cao AH. Gọi D là chân đường vuông góc kẻ từ H đến AC. I là trung điểm của HD.
a, Gọi M là trung điểm của CD. CMR: MI vuông góc với AH
b, CM: AI vuông góc với BD
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E. a) Chứng minh tam giác ADE cân. b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE.
GIÚP MÌNH VỚI! MÌNH ĐANG CẦN GẤP!!
Cho tam giac ABC vuông tại A, AC>AB, đường cao AD. Lấy E trên cạnh BC sao cho BD=DE. Kẻ CF vuông góc với đường thẳng AE kéo dài tại F. Gọi K là giao điểm của đường thẳng AD và đường thẳng CF.
a/ C/M: Tam giác ADB= Tam giác ADE.
b/ C/M: KE song song với AB.
c/ C/M: CB là tia phân giác góc ACF.
d/ Tìm điều kiện của tam giác ABC để tam giác AKC đều.
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath