Giải phương trình: \(x^3+6x^2+5x-3-\left(2x+5\right)\sqrt{2x+3}=0\)
Giải phương trình: \(x^3+6x^2+5x-3-\left(2x+5\right)\sqrt{2x+3}=0\)
Giải phương trình:
\(x^3+6x^2+5x-3-\left(2x+5\right)\sqrt{2x+3}=0\)
Giải phương trình:
\(x^3+6x^2+5x-3-\left(2x+5\right)\sqrt{2x+3}=0\)
ĐK:x≥-3/2
Phương trình biến đổi như sau:
x^3 +6x^2+5x+3 - \(\left(2x+5\right)\sqrt{2x+3}\)
<=> x^3+4x^2+5x-3 - \(\left(2x+5\right)\left(x+1\right)-\left(2x+5\right)\sqrt{2x+3}-x-1=0\)
<=> \(\left(x^2-2\right)\left(x+4+\frac{2x+5}{x+1+\sqrt{2x+3}}\right)=0\)
Ta thấy: x \(\ge-\frac{3}{2}\) thì x+4+ \(\frac{2x+5}{x+1+\sqrt{2x+3}}\ge0\)
=> x^ 2 -2 = 0 => x^ 2 = 2 => x= \(\sqrt{2}hoặc-\sqrt{2}\)
thử lại x= \(-\sqrt{2}\) loại
vậy x= \(\sqrt{2}\)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
giải phương trình \(x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-5x+7}\)
giải phương trình :
a, \(\dfrac{4x-1}{\sqrt{4x-3}}+\dfrac{11-2x}{\sqrt{5-x}}=\dfrac{15}{2}\)
b, \(\left(\sqrt{5x-1}+\sqrt{x-1}\right)\left(3x-1-\sqrt{5x^2-6x+1}\right)=4x\)
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290