Những câu hỏi liên quan
DA
Xem chi tiết
H24
Xem chi tiết
LT
10 tháng 8 2019 lúc 19:13

Pt tương đương:

\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\)=\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\)

\(\Leftrightarrow\)-3\(\sqrt[3]{\text{(4x-3)(3x+1)}}\)(\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\))=3\(\sqrt[3]{\left(5-x\right)\left(2x-9\right)}\)(\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\))

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt[3]{4x-3}-\sqrt[3]{3x+1}=\sqrt[3]{5-x}+\sqrt[3]{2x-9}=0\left(1\right)\\3\sqrt[3]{-12x^2+5x+3}=3\sqrt[3]{-2x^2+19x-45}\left(2\right)\end{cases}}\)

(1)<=>4x-3=3x+1 và x-5=2x-9<=>x=4

(2)<=>-12x2+5x+3=-2x2+19x-45<=>-5x2-7x+24=0<=>x=8/5 và x=-3

 bạn thử các giá trị x=4,x=8/5 và x=-3 vào pt và kết luận

Bình luận (0)
UI
10 tháng 8 2019 lúc 19:27

mik ko hieu vi sao ban suy ra duoc (1) va (2)

bn co the viet ro ra duoc ko ?

theo mik thay thi 2 pt do dau co tuong duong

Bình luận (0)
LT
10 tháng 8 2019 lúc 19:30

Mình chuyển vế rồi lập phương, do  4x-3-(3x+1)=2x-9+(5-x) nên mình giản bỏ luôn, hơi tắc xíu

Bình luận (0)
TV
Xem chi tiết
TT
30 tháng 3 2018 lúc 18:57

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

Bình luận (0)
TV
30 tháng 3 2018 lúc 19:25

minh lop 5 dang chi minh muon nick cua minh

Bình luận (0)
SN
1 tháng 4 2018 lúc 6:29

Ta có : x(2x + 3)2 - 4x2 + 9 = 0 

<=> x(2x + 3)2 - (4x2 - 9) = 0 

<=> x(2x + 3)2 - (2x - 3)(2x + 3) = 0 

<=> (2x + 3)[x(2x + 3) - 2x + 3] = 0 

<=> (2x + 3)(2x2 + 3x - 2x + 3) = 0 

<=> (2x + 3)(2x2 + x + 3) = 0 

<=> 2x + 3 = 0 (vì 2x2 + x + 3 > 0 với mọi x)

<=> 2x = -3

<=> x = -3/2

Bình luận (0)
H24
Xem chi tiết
TL
Xem chi tiết
AH
30 tháng 7 2018 lúc 17:01

Lời giải:

Với mọi $x$ thuộc ĐKXĐ, ta luôn có:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)

Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)

Do đó pt vô nghiệm.

Bình luận (2)
MP
Xem chi tiết
KN
Xem chi tiết
NT
28 tháng 1 2019 lúc 13:37

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

Bình luận (0)
H24
Xem chi tiết
VC
23 tháng 7 2018 lúc 20:54

liên hợ thôi !

Bình luận (0)
ND
Xem chi tiết
H24
24 tháng 5 2019 lúc 20:18

tôi mới lớp5

Bình luận (0)
H24
24 tháng 5 2019 lúc 20:21

i am 11 years old,do you know

Bình luận (0)